Skip to main content
Log in

The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Studies of the stability of various metal EDTA, DTPA and DOTA complexes in order to evaluate their applicability as non-sorbing tracers have been performed. In laboratory tests, the stability generally increases for the individual metal ions in the EDTA<DTPA<DOTA order. For most metal ions, the same trend can be observed for the thermodynamic stability constants. In the in situ experiment, various metal EDTA tracers were used in very low concentrations; YbEDTA, for example had a breakthrough and recovery which were very similar to the non-sorbing tracers used. According to the extremely low tracers concentrations used, thermodynamic data indicate that all metal EDTA tracers should have been decomplexed as a result of the competition with the naturally occurring cations in the groundwater. This was not found, which indicates that the decomplexation rate and sorption mechanism are important in estimating the applicability of the metal complexes as tracers. The DOTA complexes of elements in the middle of the lanthanide series have indicated high stability in the laboratory tests and therefore appear to be good candidates as non-sorbing tracers. However, in contrary to the metal EDTA, tracers, the DOTA complexes of La3+ and Lu3+ seemed to be slightly delayed in the in situ experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Byegård, G. Skarnemark, M. Skålberg, Mat. Res. Soc. Symp. Proc., 212 (1991) 677.

    Google Scholar 

  2. E. Gustafsson, R. Nordqvist, Swedish Nuclear Fuel and Waste Management Co., SKB Technical Report 93-25, Stockholm, 1993.

  3. L. Birgersson, L. Moreno, I. Neretnieks, H. Widén, T. Ågren, Water Resour. Res., 29 (1993) 3867.

    Article  Google Scholar 

  4. R. Cadic, P. Longère, C. Gauthier, J. C. Borgotti, P. Vié, Bull. Liaison Lab. Ponts Chausses, 166 (1990) 45.

    CAS  Google Scholar 

  5. P. Toulhoat, Mat. Res. Soc. Symp. Proc., 50 (1985) 755.

    Google Scholar 

  6. S. Bigot, M. Treuil, J. Domonceau, F. Fromage, J. Hydrol., 70 (1984) 133 (in French).

    Article  Google Scholar 

  7. H. Behrens, H. Moser, E. Wildner, J. Radioanal. Chem., 38 (1977) 491.

    CAS  Google Scholar 

  8. P. Hanson, Ph. D. Thesis, Oregon State University, Oregon, 1970.

  9. G. Knutsson, K. Ljunggren, H. G. Forsberg, in: Radioisotopes in Hydrology, IAEA, Vienna 1963, p. 347.

    Google Scholar 

  10. D. C. Girvin, P. L. Gassman, H. Bolton, Soil Sci. Soc. Am. J., 57 (1993) 47.

    CAS  Google Scholar 

  11. C. P. Huang, E. A. Rhoads, O. J. Hao, Wat. Res., 22 (1988) 1001.

    Article  CAS  Google Scholar 

  12. A. R. Bowers, C. P. Huang, J. Colloid Interface Sci., 110 (1986) 575.

    Article  CAS  Google Scholar 

  13. M. A. Blesa, E. B. Borghi, A. J. G. Maroto, A. E. Regazzoni, J. Colloid Interface Sci., 98 (1984) 295.

    Article  CAS  Google Scholar 

  14. E. Brücher, P. Szarvas, Inorg. Chim. Acta, 4 (1970) 632.

    Article  Google Scholar 

  15. E. Brücher, G. Laurenczy, J. Inorg. Nucl. Chem., 43 (1981) 2089.

    Google Scholar 

  16. T. Ryhl, Acta Chem. Scand., 26 (1972) 4001.

    CAS  Google Scholar 

  17. E. Brücher, L. Boros, Proc. XVth Intern. Conf. on Coordination Chemistry, 15 (1973) 420.

    Google Scholar 

  18. T. Ryhl, Acta Chem. Scand., 27 (1973) 20.

    Google Scholar 

  19. É. Tóth, E. Brücher, Inorg. Chim. Acta, 221 (1994) 165.

    Article  Google Scholar 

  20. P. W. Cacheris, S. K. Nickle, A. D. Sherry, Inorg. Chem., 26, (1987) 958.

    Article  CAS  Google Scholar 

  21. E. Brücher, G. Laurenczy, Zs. Makra, Inorg. Chim. Acta, 139 (1987) 141.

    Article  Google Scholar 

  22. É. Tóth, E. Brücher, I. Lázár, I. Tóth, Inorg. Chem., 33 (1994) 4070.

    Google Scholar 

  23. X. Wang, J. Tianzhu, V. Comblin, A. Lopez-Mut, E. Merciny, J. F. Desreux, Inorg. Chem., 31 (1992) 1095.

    CAS  Google Scholar 

  24. J. Byegård, G. Skarnemark, M. Skålberg, Submitted to J. Cont. Hydrology.

  25. R. M. Smith, A. E. Martell, Critical Stability Constants, Plenum Press, New York, 1976.

    Google Scholar 

  26. E. T. Clarke, A. E. Martell, Inorg. Chim. Acta, 190 (1991) 27.

    CAS  Google Scholar 

  27. E. T. Clarke, A. E. Martell, Inorg. Chim. Acta, 190 (1991) 37.

    CAS  Google Scholar 

  28. S. Chaves, R. Delgado, J. J. R. Frausto Da Silva, Talanta, 39 (1992) 249.

    Article  CAS  Google Scholar 

  29. W. v. d. Linden, G. Anderegg, Helv. Chim. Acta, 53 (1970) 569 (in German).

    Article  Google Scholar 

  30. V. P. Antonovitch, E. M. Nevskaya, E. Suvorova, Zh. Neorg. Khim., 22 (1977) 1278 (in Russian).

    Google Scholar 

  31. M. M. Taquikhan, G. Ramachandraiah, Indian J. Chem., 21 (1982) 441.

    Google Scholar 

  32. S. Å. Larsson, E. L. Tullborg, S. Lindblom, PRAV-Reprot, 4-20, Swedish Nuclear Power Inspectorate, Stockholm 1981.

    Google Scholar 

  33. I. Puigdomènech, K. Nordstrom, SKB Technical Report 87-15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 1987.

    Google Scholar 

  34. P. Andersson, R. Nordqvist, T. Persson, C. O. Eriksson, E. Gustafsson, T. Ittner, Swedish Nuclear Fuel and Waste Management Co., SKB Technical Report 93-26, Stockholm, 1993.

  35. W. J. Lacey, W. De Laguna, Science, 124 (1956) 402.

    CAS  Google Scholar 

  36. E. Halevy, A. Nir, Y. Harpaz, S. Mandel, in: Proc. 2nd Intern. Conf. on the Peaceful Uses of Atomic Energy, Vol. 20. Genève 1958, p. 158.

  37. R. J. Heemstra, J. W. Watkins, F. E. Armstrong, Nucleonics, 19 (1961) 92.

    Google Scholar 

  38. I. B. Hazzaa, R. K. Girgis, K. F. Saad, F. M. Swailem, A. A. Bakr, Intern. J. Appl. Radiation Isotopes, 17 (1966) 621.

    CAS  Google Scholar 

  39. D. W. Margerum, D. R. Cayley, D. C. Weatherburn, G. K. Pagenkopf, Coordination Chemistry,A. E. Martell (Ed.), ACS Monogr. No. 174, American Chemical Society, Washington, DC, 1978.

    Google Scholar 

  40. G. Knutsson, H. G. Forsberg, in: Isotopes in Hydrology, IAEA, Vienna, 1967, p. 629.

    Google Scholar 

  41. G. Knutsson, in: Ground Water Problems,E. Erksson, Y. Gustafsson, K. Nilsson (Eds.), Pergamon Press, Oxford, 1968, p. 123.

    Google Scholar 

  42. J. Bond, D. B. Hobson, J. Chem. Soc. A, (1969) 2155.

  43. R. R. Das, J. Indian Chem. Soc., LI (1974) 1024.

    Google Scholar 

  44. K. Saito, M. Tsuchimoto, J. Inorg. Nucl. Chem., 25 (1963) 145.

    Article  Google Scholar 

  45. I. Drabæk, J. Radioanal. Chem., 75 (1982) 97.

    Google Scholar 

  46. W. A. Jester, M. Brienco, A. R. Jarret, S. H. Sakuma, C. Yu, J. Radioanal. Nucl. Chem., 110 (1987) 215.

    CAS  Google Scholar 

  47. M. Magerstadt, O. A. Gansow, M. W. Brechbiel, D. Colcher, L. Baltzer, R. H. Knop, M. E. Girton, M. Naegele, Magn. Reson. Med., 3 (1986) 808.

    CAS  Google Scholar 

  48. D. Parker, K. Pulukkody, T. J. Norman, A. Harrison, L. Royle, C. Walker, J. Chem. Soc. Chem. Commun., (1992) 1441.

  49. M. R. Spirlet, J. Rebizant, J. F. Desreux, M. F. Loncin, Inorg. Chem., 23 (1984) 359.

    CAS  Google Scholar 

  50. J. L. Hoard, B. Lee, M. D. Lind, J. Am. Chem. Soc., 87 (1965) 1611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byegård, J., Skarnemark, G. & Skålberg, M. The stability of some metal EDTA, DTPA and DOTA complexes: Application as tracers in groundwater studies. J Radioanal Nucl Chem 241, 281–290 (1999). https://doi.org/10.1007/BF02347463

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347463

Keywords

Navigation