Skip to main content
Log in

Effectiveness of supplemental grasp-force feedback in the presence of vision

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Previous studies have shown that supplemental grasp-force feedback can improve control for users of a hand prosthesis or neuroprosthesis under conditions where vision provides little force information. Visual cues of force are widely available in everyday use, however, and may obviate the utility of supplemental force information. The purpose of the present study was to use a video-based hand neuroprosthesis simulator to determine whether grasp-force feedback can improve control in the presence of realistic visual information. Seven able-bodied subjects used the simulator to complete a simple grasp-and-hold task while controlling and viewing pre-recorded, digitised video clips of a neuroprosthesis user's hand squeezing a compliant object. The task was performed with and without supplemental force feedback presented via electrocutaneous stimulation. Subjects had to achieve and maintain the (simulated) grasp force within a target window of variable size (±10–40% of full scale). Force feedback improved the success rate significantly for all target window sizes (8–16%, on average), and improved the success rate at all window sizes for six of the seven subjects. Overall, the improvement was equivalent functionally to a 35% increase in the window size. Feedback also allowed subjects to identify the direction of grasp errors more accurately, on average by 10–15%. In some cases, feedback improved the failure identification rate even if success rates were unchanged. It is thus concluded that supplemental grasp-force feedback can improve grasp control even with access to rich visual information from the hand and object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamczyk, M. M., andCrago, P. E. (1996): ‘Input-output non-linearities and time delays increase tracking errors in hand grasp neuroprostheses’,IEEE Trans. Rehab. Eng.,4, pp. 271–279

    Article  Google Scholar 

  • Allen, V. (1971): ‘Follow-up study of wrist-driven flexor-hinge-splint use’,Am. J. Occup. Therapy,25, pp. 420–422

    Google Scholar 

  • Beebe, D., Denton, D., Radwin, R., andWebster, J. (1998): ‘A silicon-based tactile sensor for finger-mounted applications’,IEEE Trans. Biomed. Eng.,45, pp. 151–159

    Article  Google Scholar 

  • Blanken, H., Fuss, C., andBakker, H. (1983): ‘Research and development of functional aids’,Prosthet. Orthot. Int.,7, pp. 37–40

    Google Scholar 

  • Castro, M., Jr., AC (1997): ‘A low-cost instrumented glove for monitoring forces during object manipulation’,IEEE Trans. Rehab. Eng.,5, pp. 140–147

    Article  Google Scholar 

  • Cohen, J. (1988): ‘Statistical power analysis for the behavioral sciences’, (Erlbaum, Hillsdale, NJ)

    Google Scholar 

  • Crago, P., Memberg, W., Usey, M., Keith, M., Kirsch, R., Chapman, G., Katorgi, M., andPerrault, E. (1998): ‘An elbow extension neuroprosthesis for individuals with tetraplegia’,IEEE Trans. Rehab. Eng.,6, pp. 1–6

    Article  Google Scholar 

  • Crago, P. E., Nakai, R. J., andChizeck, H. J. (1991): ‘Feedback regulation of hand grasp opening and contact force during stimulation of paralyzed muscle’,IEEE Trans. Biomed. Eng.,38, pp. 17–28

    Article  Google Scholar 

  • Crago, P. E., Vandoren, C. L., andGrill, W. M.,et al. (1997): ‘Closed-loop control of functional neuromuscular stimulation’, Quarterly Progress Report 4, NIH Contract N01-NS-2338

  • Crooke, S. E., andChappell, P. H. (1998): ‘A portable system for closed loop control of the paralysed hand using functional electrical stimulation’,Med. Eng. Phys.,20, pp. 70–76

    Google Scholar 

  • Durfee, W. K., Mariano, T. R., andZahradnik, J. L. (1991): ‘Simulator for evaluating shoulder motion as a command source for FES grasp restoration systems’,Arch. Phys. Med. Rehab.,72, pp. 1088–1094

    Google Scholar 

  • Freehafer, A. (1991): ‘Tendon transfers in patients with cervical spinal cord injury’,J. Hand Surg.,16, pp. 804–809

    Google Scholar 

  • Grill, J., andPeckham, P. (1998): ‘Functional neuromuscular stimulation for combined control of elbow extension and hand grasp in C5 and C6 quadriplegics’,IEEE Trans. Rehab. Eng.,6, pp. 190–199

    Google Scholar 

  • Handa, Y., Handa, T., Ichie, M., Murakami, H., Hoshimiya, N., Ishikawa, S., andOhkubo, K. (1992): ‘Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscles—versatile systems and a portable system’,Front. Med. Biol. Eng.,4, pp. 241–255

    Google Scholar 

  • Hentz, V., House, J., McDowell, C., andMoberg, E. (1992): ‘Rehabilitation and surgical reconstruction of the upper limb in tetraplegia: an update’,J. Hand. Surg.,17, pp. 964–967

    Google Scholar 

  • Hines, A. E., Owens, N. E., andCrago, P. E. (1992): ‘Assessment of input-output properties and control of neuroprosthetic hand grasp’,IEEE Trans. Biomed. Eng.,39, pp. 610–623

    Article  Google Scholar 

  • Hoffer, J. A., Stein, R. B., Haugland, M. K., Sinkjaer, T., Durfee, W. K., Schwartz, A. B., Loeb, G. E., andKantor, C. (1996): ‘Neural signals for command control and feedback in functional neuromuscular stimulation: a review’,J. Rehab. Res. Dev.,33, pp. 145–157

    Google Scholar 

  • Hoshimiya, N. Izumi, T., Fujii, X., Futami, R., Ifukube, T., andHanda, Y. (1986): ‘Sensory feedback for the “FNS” system’. Proceedings, 8th Annual Conference of IEEE on Engineering in Medical Biology, Dallas-Fort Worth

  • Jensen, T. R., Radwin, R. G., andWebster, J. G. (1991): ‘A conductive polymer sensor for measuring external finger forces’,J. Biomech.,24, pp. 851–858

    Google Scholar 

  • Johansson, R. S., andWestling, G. (1984): ‘Influences of cutaneous sensory input on the motor coordination during precision manipulation’ invon Euler, C., Franzen, O., Lindblom, U., andOttoson, D. (Eds.), ‘Somatosensory Mechanisms’ (MacMillan, London), pp. 249–260

    Google Scholar 

  • Kaczmarek, K. (1995): ‘Sensory augmentation and substitution’ inBronzino, J. D. (Ed.): ‘CRC handbook of biomedical engineering’ (CRC Press, Boca Raton, FL), pp. 2100–2109

    Google Scholar 

  • Kaczmarek, K. A., Webster, J. G., Bach-y-Rita, P., andTompkins, W. J. (1991): ‘Electrotactile and vibrotactile displays for sensory substitution systems’,IEEE Trans. Biomed. Eng.,38, pp. 1–16

    Google Scholar 

  • Kawamura, Z., andSueda, O. (1968): ‘Sensory feedback device for the artificial arm’. 4th Pan Pacific Rehabilitation Conference, Hong Kong

  • Kawamura, J., Sueda, O., Harada, K., Nishihara, K., andIsobe, S. (1981): ‘Sensory feedback systems for the lower-limb prosthesis’,J. Osaka Rosai Hospital,5, pp. 104–112

    Google Scholar 

  • Keith, M. W., Peckham, P. H., Thrope, G. B., Stroh, K. C., Smith, B., Buckett, J. R., Kilgore, K. L., andJatich, J. W. (1989): ‘Implantable functional neuromuscular stimulation in the tetraplegic hand’,J. Hand. Surg.,14A, pp. 524–530

    Google Scholar 

  • Kilgore, K. L., Peckham, P. H., Keith, M. W., andThrope, G. B. (1990): ‘Electrode characterization for functional application to upper extremity FNS’,IEEE Trans. Biomed. Eng.,37, pp. 12–21

    Article  Google Scholar 

  • Kilgore, K., Peckham, P., Keith, M., Thrope, G., Wuolle, K., Bryden, A., andHart, R. (1997): ‘An implanted upper-extremity neuroprosthesis: follow-up of five patients’,J. Bone Joint Surg.,79A, pp. 533–541

    Google Scholar 

  • Mann, R. W., andReimers, S. D. (1970): ‘Kinesthetic sensing for the EMG controlled “Boston arm”’,IEEE Trans. Man Machine Syst.,11, pp. 110–115

    Google Scholar 

  • Meek, S. G., Jacobsen, S. C., andGoulding, P. P. (1989): ‘Extended physiologic taction: design and evaluation of a proportional force feedback system’,J. Rehab. Res. Dev.,26, pp. 53–62

    Google Scholar 

  • Milchus, K. (1991): ‘Design and evaluation of synthetic grasp force feedback’. MS thesis, Department of Biomedical Engineering, Case Western Reserve University

  • Nathan, R. H. (1993): ‘Control strategies in FNS systems for upper extremities’,CRC Crit. Rev. Biomed. Eng.,21, pp. 485–568

    Google Scholar 

  • Neter, J., Wasserman, W., andWhitmore, G. (1978): ‘Applied statistics’, (Allyn & Bacon, Boston)

    Google Scholar 

  • Patterson, P. E., andKatz, J. A. (1992): ‘Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand’,J. Rehab. Res. Dev.,29, pp. 1–8

    Google Scholar 

  • Prochazka, A., Gauthier, M., Wieler, M., andKenwell, Z. (1997): ‘The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia’,Arch. Phys. Med. Rehab.,78, pp. 608–614

    Google Scholar 

  • Riso, R. R., Ignagni, A. R., andKeith, M. W. (1991): ‘Cognitive feedback for use with FES upper extremity neuroprostheses’,IEEE Trans. Biomed. Eng.,38, pp. 29–38

    Article  Google Scholar 

  • Sachs, R. M., Miller, J. D., andGrant, K. W. (1980): ‘Perceived magnitude of multiple electrocutaneous pulses’Percept. Psychophys.,28, pp. 255–262

    Google Scholar 

  • Saunders, F. A. (1974): ‘Electrocutaneous displays. Cutaneous communication systems and devices’ (Psychonomic Society, Monterey, CA)

    Google Scholar 

  • Saunders, F. A. (1977): ‘Recommended procedures for electrocutaneous displays’ in Hambrecht, F. T., and Reswick, J. B. (Eds.): ‘Functional electrical stimulation: applications in neural prostheses’ (Marcel Dekker, New York), vol. 3, pp. 303–309

    Google Scholar 

  • Scott, T., Peckham, P., andKilgore, K. (1996): ‘Tri-state myoelectric control of bilateral upper extremity neuroprosthesis fortetraplegic individuals’,IEEE Trans. Rehab. Eng.,4, pp. 251–263

    Article  Google Scholar 

  • Shannon, G. F. (1976): ‘A comparison of alternative means of providing sensory feedback on upper limb prostheses’,Med. Biol. Eng.,14, pp. 289–294

    Google Scholar 

  • Shannon, G. F. (1979): ‘Sensory feedback for artificial limbs’,Med. Prog. Technol.,6, pp. 73–79

    Google Scholar 

  • Szeto, A. Y. J., andLyman, J. (1977): ‘Comparison of codes for sensory feedback using electrocutaneous tracking’,Ann. Biomed. Eng.,5, pp. 367–383

    Google Scholar 

  • Szeto, A. Y. J., andRiso, R. R. (1990): ‘Sensory feedback using electrical stimulation of the tactile sense’ in R. V. Smith, and Leslie, J. H. Jr. (Eds): ‘Rehabilitation Engineering’, (CRC Press, Boca Raton), pp. 30–73

    Google Scholar 

  • Triolo, R., Nathan, R., Handa, Y., Keith, M., Betz, R. R., Carroll, S., andKantor, C. (1996): ‘Challenges to clinical deployment of upper limb neuroprostheses’,J. Rehab. Res. Dev.,33, pp. 111–122

    Google Scholar 

  • Van Doren, C. L., Riso, R. R., andMilchus, K. (1991): ‘Sensory feedback for enhancing upper extremity neuromuscular prostheses’,J. Neurol. Rehab.,5, pp. 63–74

    Google Scholar 

  • Westling, G., andJohansson, R. S. (1984): ‘Factors influencing the force control during precision grip’,Exp. Br. Res.,53, pp. 277–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Van Doren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafar, M., Van Doren, C.L. Effectiveness of supplemental grasp-force feedback in the presence of vision. Med. Biol. Eng. Comput. 38, 267–274 (2000). https://doi.org/10.1007/BF02347046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347046

Keywords

Navigation