Skip to main content
Log in

Principal component analysis and cluster analysis for measuring the local organisation of human atrial fibrillation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The distribution of atrial electrogram types has been proposed to characterise human atrial fibrillation. The aim of this study was to provide computer procedures for evaluating the local organisation of intracardiac recordings during AF as an alternative to off-line manual classification. Principal component analysis (PCA) reduced the data set to a few representative activations, and cluster analysis (CA) measured the average dissimilarity between consecutive activations of an intracardiac signal. The data set consisted of 106 bipolar signals recorded on 11 patients during electrophysiological studies for catheter ablation. Performances of PCA and CA in distinguishing between organised (type I) and disorganised (type II/III, Wells criteria) were assessed, in comparison with manual reading, by evaluating the predictive parameters of the classification analysis. Both methods gave high accuracy (92% for PCA and 89% for CA), confirming the feasibility of on-line characterisation of AF. Sensitivity was lower than specificity (81% against 98% for PCA, and 77% against 97% for CA), with seven out of eight misclassifications of PCA in common with CA. Differences between manual and computer analysis may be related to the higher resolution of PCA and CA in the measurement of the organisation of atrial activations. These procedures are suitable for providing automatic (by CA) or semi-automatic (by PCA) measures of the extent of local organisation of AF in the pre-ablation treatment phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allessie, M. A., Lammers, W. J. E. P., Bonke, F. I. M., andHollen, J. (1985): ‘Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation’ inZipes, D. P., andJalife, J. (Eds.): ‘Cardiac electrophysiology and arrhythmias’ (Grune and Straton, New York, 1985) pp. 265–275

    Google Scholar 

  • Barbaro, V., Bartolini, P., Calcagnini, G., Morelli, S., Michelucci, A., andGensini, G. (2000): ‘Automated classification of human atrial fibrillation from intraatrial electrograms’,PACE,23, pp. 192–202

    Google Scholar 

  • Bishop, C. M. (1995): ‘Neural networks for pattern recognition’ (University Press, Oxford, 1995)

    Google Scholar 

  • Botteron, G. W., andSmith, J. M. (1995): ‘A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart’,IEEE Trans. Biomed. Eng. 42, pp. 579–586

    Article  Google Scholar 

  • Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., Orsi, C., andMagnani, B. (1995): ‘Dynamic electrophysiological behavior of human atria during paroxysmal atrial fibrilation’,Circulation,92, pp. 1193–1202

    Google Scholar 

  • Censi, F., Barbaro, V., Bartolini, P., Calcagnini, G., Michelucci, A., Gensini, G. F., andCerutti, S. (2000): ‘Recurrent patterns of atrial depolarization during atrial fibrillation assessed by recurrence plot quantification’,Ann. Biomed. Eng.,28, pp. 61–70

    Article  Google Scholar 

  • Duda, R. O., andHart, P. E. (1973): ‘Pattern classification and scene analysis’ (John Wiley & Sons, New York, 1973) pp. 73–78

    Google Scholar 

  • Dugad, R., andAhuja, N. (1998): ‘Unsupervised multidimensional hierarchical clustering’. Proc. Conf. Acoust. Speech and Signal Processing, Seattle, USA, pp. 2761–2764

  • Fisher, L. D., andVan Belle, G. (1993): ‘Biostatistics. A methodology for the health sciences’ (John Wiley & Sons, New York, 1993), pp. 692–762

    Google Scholar 

  • Gaita, F., Riccardi, R., Calò, L., Scaglione, M., Garberoglio, L., Antolini, R., Kirchner, M., Lamberti, F., andRichiardi, E. (1998): ‘Atrial mapping and radiofrequency catheter ablation in patients with idiopathic atrial fibrillation’,Circulation,97, pp. 2136–2145

    Google Scholar 

  • Gaita, F., Calò, L., Riccardi, R., Garberoglio, L., Scaglione, M., Licciardello, G., Coda, L., Di Donna, P., Bocchiardo, M., Caponi, D., Antolini, R., Orzan, F., andTrevi, G. P. (2001): ‘Different pattern of atrial activation in idiopathic atrial fibrillation: simultaneous multisite atrial mapping in patients with paroxysmal and chronic atrial fibrillation’,J. Am. Coll. Cardiol.,37, pp. 534–541

    Article  Google Scholar 

  • Gerstenfeld, E. P., Sahakian, A. V., andSwiryn, S. (1992): ‘Evidence for transient linking of atrial excitation during atrial fibrillation in humans’,Circulation,86, pp. 375–382

    Google Scholar 

  • Hafner, B. J., Zachariah, S. G., andSanders, J. E. (2000): ‘Characterisation of three-dimensional anatomic shapes using principal components: application to the proximal tibia’,Med. Biol. Eng. Comput.,38, pp. 9–16

    Article  Google Scholar 

  • Holm, M., Johansson, R., Olsson, S. B., Brandt, J., andLuhrs, C. (1996): ‘A new method for analysis of atrial activation during chronic atrial fibrillation in man’,IEEE Trans. Biomed. Eng.,43, pp. 198–210

    Article  Google Scholar 

  • Jackson, J. E. (1981): ‘Principal components and factor analysis: Part 1—principal components’,J. Qual. Tech.,13, pp. 55–63

    Google Scholar 

  • Jain, A. K., andDubes, R. C. (1988): ‘Algorithms for clustering data’ (Englewood Cliffs, Prentice Hall, New Jersey, 1988)

    Google Scholar 

  • Kaufman, L., andRousseeuw, P. J. (1990): ‘Finding groups in data: an introduction to cluster analysis’ (John Wiley & Sons, New York, 1990)

    Google Scholar 

  • Konings, K. T. S., Kirchhof, C. J. H. J., Smeets, J. L. R. M., Wellens, H. J. J., Penn, O. C., andAllessie, M. A. (1994): ‘High-density mapping of electrically induced atrial fibrillation in humans’,Circulation,89, pp. 1665–1680

    Google Scholar 

  • Langley, P., Bourke, J. P. andMurray, A. (2000): ‘Frequency analysis of atrial fibirllation’,Comput. Cardiol.,27, pp. 65–68

    Google Scholar 

  • Li, H., Hare, J., Mughal, K., Krum, D., Biehl, M., Deshpande, S., Dhala, A., Blanck, Z., Sra, J., Jazayeri, M., andAkhtar, M. (1996): ‘Distribution of atrial electrogram types during atrial fibrillation: effect of rapid atrial pacing and intercaval junction ablation’,J. Am. Coll. Cardiol.,27, pp. 1713–1721

    Google Scholar 

  • Levy, S., Breithardt, G., Campbell, R. W. F., Camm, A. J., Daubert, J. C., Allessie, M. A., Aliot, E., Capucci, A., Cosio, F., Crijns, H., Jordaens, L., Hauer, R. N. W., Lombardi, F., andLüderitz, B. (1998): ‘Atrial fibrillation: current knowledge and recommendations for management,Europ. Heart J.,19, pp. 1294–1320

    Google Scholar 

  • Moe, G. K. (1962): ‘On the multiple wavelet hypothesis of atrial fibrillation’,Arch. Int. Pharmacodyn. Ther.,140, pp. 183–188

    Google Scholar 

  • Natale, A., Leonelli, F., Beheiry S., Newby, K., Pisano, E., Potenza, D., Rajkovich, K., Wides, B., Cromwell, L., andTomassoni, G. (2000): ‘Catheter ablation approach on the right side only for paroxysmal atrial fibrillation therapy: long term results’,PACE,23, pp. 224–233

    Google Scholar 

  • Pieper, C. F., Blue, R., andPacifico, A. (1991): ‘Influence of time of sampling onset on parameters used for activation time determination in computerized intraoperative mapping’,Pacing Clin. Electrophysiol.,14, pp. 214–226

    Google Scholar 

  • Ropella, K. M., Sahakian, A. V., Baerman, J. M., andSwiryn, S. (1989): ‘The coherence spectrum: a quantitative discriminator of fibrillatory and nonfibrillatory rhythms’,Circulation,80, pp. 112–119

    Google Scholar 

  • Sih, H. J., Zipes, D. P., Berbari, E. J., andOlgin, J. E. (1999): ‘A high-temporal resolution algorithm for quantifying organization during atrial fibrillation,’,IEEE Trans. Biomed. Eng.,46, pp. 440–450

    Article  Google Scholar 

  • Slocum, J., Byrom, E., McCarthy, L., Sahakian, A., andSwiryn, S. (1985): ‘Computer detection of atrioventricular dissociation from surface electrocardiograms during wide QRS complex tachycardias’,Circulation,72, pp. 1028–1036

    Google Scholar 

  • Smeets, J. L. R. M., Allessie, M. A., Lammers, W. J. E. P., Bonke, F. I. M., andHollen, J. (1986): ‘The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium: the role of heart rate, autonomic transmitters, temperature, and potassium’,Circ. Res.,58, pp. 96–108

    Google Scholar 

  • Wells, J. L., Karp, R. B., Kouchoukos, N. T., Maclean, W. A. H., James, T. N., andWaldo, A. L. (1978): ‘Characterization of atrial fibrillation in man: studies following open heart surgery’,PACE,1, pp. 426–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Faes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faes, L., Nollo, G., Kirchner, M. et al. Principal component analysis and cluster analysis for measuring the local organisation of human atrial fibrillation. Med. Biol. Eng. Comput. 39, 656–663 (2001). https://doi.org/10.1007/BF02345438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345438

Keywords

Navigation