Skip to main content
Log in

Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The objective of the study was to evaluate the growth-promoting activity of human platelet supernanant on primary chondrocytes in comparison with fetal calf serum (FCS) supplemented cell culture medium. Furthermore, the differentiation potential of platelet supernatant was determined in three-dimensional artificial cartilage tissues of bovine articular chondrocytes. Proliferation of articular and nasal septal chondrocytes was assayed by incorporation of BrdU upon stimulation with ten different batches of human platelet supernatant. On bovine articular chondrocytes, all these batches were at least as growth-promoting as FCS. On nasal septal chondrocytes, nine out of ten batches revealed increased or equivalent mitogenic stimulation compared with medium supplemented with FCS. Three-dimensional culture and subsequent histological analysis of matrix formation were used to determine the differentiation properties of platelet supernatant on articular chondrocytes. Human platelet supernatant failed to induce the deposition of typical cartilage matrix components, whereas differentiation and matrix formation were apparent upon cultivation of articular chondrocytes with FCS. Proliferation assays demonstrated that human platelet supernatant stimulates growth of articular and nasal septal chondrocytes; however, platelet supernatant failed to stimulate articular chondrocytes to redifferentiate in three-dimensional chondrocyte cultures. Therefore platelet lysate may be suitable for chondrocyte expansion, but not for maturation of tissue-engineered cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arevalo-Silva, C. A., Cao, Y., Weng, Y., Vacanti, M., Rodriguez, A., Vacanti, C. A., andEavey, R. D. (2001): ‘The effect of fibroblast growth factor and transforming growth factor-beta on porcine chondrocytes and tissue-engineered autologous elastic cartilage’,Tissue Eng.,7, pp. 81–88

    Article  Google Scholar 

  • Benya, P. D., andShaffer, J. D. (1982): ‘Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels’,Cell,30, pp. 215–224

    Article  Google Scholar 

  • Blanco, F. J., Geng, Y., andLotz, M. (1995): ‘Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression’,J. Immunol.,154, pp. 4018–4026

    Google Scholar 

  • Boumediene, K., Vivien, D., Macro, M., Bogdanowicz, P., Lebrun, E., andPujol, J. P. (1995): ‘Modulation of rabbit articular chondrocyte (RAC) proliferation by TGF-beta isoforms’,Cell. Prolif.,28, pp. 221–234

    Google Scholar 

  • Bradford, M. M. (1976): ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding’,Anal. Biochem.,72, pp. 248–254

    Article  Google Scholar 

  • Bubel, S., Wilhelm, D., Entelmann, M., Kirchner, H., andKluter, H. (1996): ‘Chemokines in stored platelet concentrates’.Transfusion,36, pp. 445–449

    Article  Google Scholar 

  • Choi, Y. C., Morris, G. M., Lee, F. S., andSokoloff, L. (1980a): ‘The effect of serum on monolayer cell culture of mammalian articular chondrocytes’,Connect. Tissue Res.,7, pp. 105–112

    Google Scholar 

  • Choi, Y. C., Morris, G. M., andSokoloff, L. (1980b): ‘Effect of platelet lysate on growth and sulfated glycosaminoglycan synthesis in articular chondrocyte cultures’,Arthritis Rheum.,23, pp. 220–224

    Google Scholar 

  • Fujimoto, E., Ochi, M., Kato, Y., Mochizuki, Y., Sumen, Y., andIkuta, Y. (1999): ‘Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage’,Arch. Orthop. Trauma Surg.,119, pp. 139–145

    Article  Google Scholar 

  • Gillogly, S. D., Voight, M., andBlackburn, T. (1998): ‘Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation’,J. Orthop. Sports Phys. Ther.,28, pp. 241–251

    Google Scholar 

  • Grainger, D. J., Mosedale, D. E., Metcalfe, J. C., Weissberg, P. L., andKemp, P. R. (1995): ‘Active and acid-activatable TGF-beta in human sera, platelets and plasma’,Clin. Chim. Acta,235, pp. 11–31

    Article  Google Scholar 

  • Gruber, R., Sittinger, M., andBujia, J. (1996): ‘In vitro cultivation of human chondrocytes using autologous human serum supplemented culture medium: minimizing possible risk of infection with pathogens of prion diseases’,Laryngorhinootologie,75, pp. 105–108

    Google Scholar 

  • Guerne, P. A., Blanco, F., Kaelin, A., Desgeorges, A., andLotz, M. (1995): ‘Growth factor responsiveness of human articular chondrocytes in aging and development’,Arthritis Rheum.,38, pp. 960–968

    Google Scholar 

  • Guerne, P. A., Sublet, A., andLotz, M. (1994): ‘Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts’,J. Cell Physiol.,158, pp. 476–484.

    Article  Google Scholar 

  • Haisch, A., Groger, A., Radke, C., Ebmeyer, J., Sudhoff, H., Grasnick, G., Jahnke, V., Burmester, G. R., andSittinger, M. (2000): ‘Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation’,Biomaterials,21, pp. 1561–1566

    Article  Google Scholar 

  • Haisch, A., Schultz, O., Perka, C., Jahnke, V., Burmester, G. R., andSittinger, M. (1996): ‘Tissue engineering of human cartilage tissue for reconstructive surgery using biocompatible resorbable fibrin gel and polymer carriers’,Hno,44, pp. 624–629.

    Article  Google Scholar 

  • Hart, C. E., Bailey, M., Curtis, D. A., Osborn, S., Raines, E., Ross, R., andForstrom, J. W. (1990): ‘Purification of PDGF-AB and PDGF-BB from human platelet extracts and identification of all three PDGF dimers in human platelets’,Biochemistry,29, pp. 166–172

    Article  Google Scholar 

  • Jakob, M., Demarteau, O., Schafer, D., Hintermann, B., Dick, W., Heberer, M., andMartin, I. (2001): ‘Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro’,J. Cell. Biochem.,81, 368–377

    Article  Google Scholar 

  • Klinger, M. H. (1997): ‘Platelets and inflammation’,Anat. Embryol. (Berl.),196, pp. 1–11

    Article  Google Scholar 

  • Mason, J. M., Breitbart, A. S., Barcia, M., Porti, D., Pergolizzi, R. G., andGrande, D. A. (2000): ‘Cartilage and bone regeneration using gene-enhanced tissue engineering’,Clin. Orthop., pp. S171–178

  • Mayne, R., Vail, M. S., Mayne, P. M., andMiller, E. J. (1976): ‘Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity’,Proc. Nat. Acad. Sci. USA,73, pp. 1674–1678

    Google Scholar 

  • Mohle, R., Green, D., Moore, M. A., Nachman, R. L., andRafh, S. (1997): ‘Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets’,Proc. Nat. Acad. Sci. USA,94, pp. 663–668

    Article  Google Scholar 

  • Narczewska, B., Czyrski, J. A., andInglot, A. D. (1985): ‘Properties of purified bovine platelet-derived growth factor stimulating proliferation of human and mouse fibroblasts’,Can. J. Biochem. Cell. Biol.,63, pp. 187–194

    Google Scholar 

  • Puelacher, W. C., Kim, S. W., Vacanti, J. P., Schloo, B.,Mooney, D., andVacanti, C. A. (1994): ‘Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices’,Int. J. Oral Maxillofac. Surg.,23, pp. 49–53

    Article  Google Scholar 

  • Quatela, V. C., Sherris, R. N. andRosier, R. N. (1993): ‘The human auricular chondrocyte. Responses to growth factors’,Arch. Otolaryngol. Head Neck Surg.,119, pp. 32–37

    Google Scholar 

  • Rodriguez, A., Cao, Y. L., Ibarra, C., Pap, S., Vacanti, M., Eavey, R. D., andVacanti, C. A. (1999): ‘Characteristics of cartilage engineered from human pediatric auricular cartilage’,Plast. Reconstr. Surg.,103, pp. 1111–1119

    Google Scholar 

  • Ross, R., Glomset, J., Kariya, B., andRaines, E. (1978): ‘Role of platelet factors in the growth of cells in culture’,Natl. Cancer Inst. Monogr., pp. 103–108

  • Rutherford, R. B., andRoss, R. (1976): ‘Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate’,J. Cell. Biol.,69, pp. 196–203

    Article  Google Scholar 

  • Sams A. E., andNixon, A. J. (1995): ‘Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects’,Osteoarthritis Cartilage,3, pp. 47–59

    Google Scholar 

  • Schultz, O., Keyszer, G., Zacher, J., Sittinger, M., andBurmester, G. R. (1997): ‘Development ofin vitro model systems for destructive joint diseases: novel strategies for establishing inflammatory pannus’,Arthritis Rheum.,40, pp. 1420–1428

    Google Scholar 

  • Selvaggi, T. A., Walker, R. E., andFleisher, T. A. (1997): ‘Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions’,Blood,89, pp. 776–779

    Google Scholar 

  • Sittinger, M., Bujia, J., Minuth, W. W., Hammer, C., andBurmester, G. R. (1994): ‘Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture’,Biomaterials,15, pp. 451–456

    Article  Google Scholar 

  • van Osch, G. J., van der Veen, S. W., Buma, P., andVerwoerd-Verhoef, H. L. (1998): ‘Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix’,Matrix Biol.,17, pp. 413–424

    Google Scholar 

  • Vivien, D., Galera, P., Lebrun, E., Loyau, G., andPujol, J. P. (1990): ‘Differential effects of transforming growth factor-beta and epidermal growth factor on the cell cycle of cultured rabbit articular chondrocytes’,J. Cell. Physiol.,143, pp. 534–545

    Article  Google Scholar 

  • Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., Owaki, H., andOno, K. (1989): ‘Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel’,Bone Joint Surg. Br.,71, pp. 74–80

    Google Scholar 

  • Weiser, L., Bhargava, M., Attia, E., Torzilli, P. A. (1999): ‘Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels’,Tissue Eng.,5, pp. 533–544

    Google Scholar 

  • Yang, S. Y., Ahn, S. T., Rhie, J. W., Lee, K. Y., Choi, J. H., Lee, B. J., andOh, G. T. (2000): ‘Platelet supernatant promotes proliferation of auricular chondrocytes and formation of chondrocyte mass’,Ann. Plast. Surg.,44, pp. 405–411

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kaps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaps, C., Loch, A., Haisch, A. et al. Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes. Med. Biol. Eng. Comput. 40, 485–490 (2002). https://doi.org/10.1007/BF02345083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345083

Keywords

Navigation