Skip to main content
Log in

Analysis and decomposition of signals obtained by thigh-fixed uni-axial accelerometry during normal walking

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The use of piezo-resistive uni-axial accelerometer signals in gait analysis is complicated by the fact that the measured signal is composed of different types of acceleration. The aim of the study is to obtain insight into the signal from a tangential accelerometer attached to the thigh during walking. Six subjects walk with three different speeds. Simultaneous measurements are performed with accelerometers, footswitches and an opto-electronic system. The components of the accelerometer signal are calculated from the opto-electronic system. A clear relationship is found between the measured and calculated accelerometer signals (range RMS: 0.76–3.69 m s−2, range rms: 0.22–0.61). The most pronounced feature is a high positive acceleration peak (> 10 m.s−2) at the end of the cycle. The gravitational acceleration during one cycle is characterised by a sinusoidal shape, whereas the inertial acceleration contains higher-frequency components (up to 20 Hz). During the major part of the gait cycle, the gravitational and inertial acceleration make opposing contributions to the signal. As a result, the gravitational acceleration influences the amplitudes of the measured acceleration signal, the shape and peaks of which are mainly determined by the inertial acceleration. Because the gravitational and inertial accelerations differ in frequency components, the application for gait analysis remains feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aminian, K., Rezakhanlou, K., de Andres, E., Fritsch, C., Leyvraz, P.-F., andRobert, P. (1999): ‘Temporal features estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthrosplasty’,Med. Biol. Eng. Comput.,37, pp. 686–691

    Google Scholar 

  • Breniere, Y., andDietrich, G. (1992): ‘Heel-off perturbation during gait initiation: biomechanical analysis using triaxial accelerometry and a force plate’,J. Biomech.,25, pp. 121–127

    Google Scholar 

  • Bussmann, J. B. J., Tulen, J. H. M., Herel van, E. C. G., andStam, H. J. (1998a): ‘Quantification of physical activities by means of accelerometry: a validation study’,Psychophysiol.,35, pp. 488–496

    Article  Google Scholar 

  • Bussmann, J. B. J., Laar van de, Y. M., Neeleman, M. P., andStam, H. J. (1998b): ‘Ambulatory accelerometry to quantify motor behavior in patients after failed back surgery”,Pain,74, pp. 153–161.

    Article  Google Scholar 

  • Bussmann, H. B. J., Reuvekamp, P. J., Veltink, P. H., Martens, W. L. T., andStam, H. J. (1998c): ‘Validity and reliability of measurements obtained with an ‘Activity Monitor’ in people with and without a transtibial amputation’,Phys. Ther.,78, pp. 989–998

    Google Scholar 

  • Bussmann, J. B. J., andStam, H. J. (1988): “Techniques for measurement and assessment of mobility in rehabilitation medicine: a theoretical approach”,Clin. Rehabil.,12, pp. 455–464

    Google Scholar 

  • Currie, G., Rafferty, D., Duncan, G., Bell, F., andEvans, A. L. (1992): ‘Measurement of gait by accelerometer and walkway: a comparison study’Med. Biol. Eng. Comp.,30, pp. 669–670

    Google Scholar 

  • Davis, R. B. (1988): ‘Clinical gait analysis’,IEEE Eng. Med. Biol. Mag., pp. 35–40

  • Evans, A. L., Duncan, G., andGilchrist, W. (1991): ‘Recording accelerations in body movements’,Med. Biol. Eng. Comput.,29, pp. 102–104

    Google Scholar 

  • Inman, V. T., Ralston, H. J., andTodd, F. (1994): ‘Human locomotion’, inRose, J., Ralston, H. J., andGamble, J. G. (Eds): ‘Human walking’ (Williams & Wilkins, Baltimore) pp. 1–22

    Google Scholar 

  • Jaegers, S. M. H. J., Arendzen, J. H., andJongh de, H. J. (1995): ‘Prosthetic gait of unilateral transfemoral amputees: a kinematic study’,Arch. Phys. Med. Rehabil.,76, pp. 736–743

    Article  Google Scholar 

  • Lohman, A. H. M. (1990): ‘Vorm en beweging Leerboek van het bewegingsapparaat van de mens’ (in Dutch) (Bohn Scheltema & Holkema, Utrecht)

    Google Scholar 

  • Moe-Nilssen, R., Ljunggren, A. E., andTorebjork, E. (1999): ‘Dynamic adjustments of walking behaviour dependent on noxious imput in experimental low back pain’,Pain,83, pp. 477–485

    Article  Google Scholar 

  • Murray, M. P., Drought, A. B., andKory, R. C. (1964): ‘Walking patterns of normal men’,J. Bone Joint Surg.,46-A, pp. 335–360

    Google Scholar 

  • Murray, M. P. (1967): ‘Gait as a total pattern of movement’,Am. J. Phys. Med.,46, p. 210

    Google Scholar 

  • Oberg, T., Karsznia, A., andOberg, K. (1993): ‘Basic gait parameters: reference data for normal subjects, 10–79 years of age’,J. Rehabil. Res. Devel.,30, pp. 210–223

    Google Scholar 

  • Robinson, J. L., Smidt, G. L., andArora, J. S. (1977): ‘Accelerographic, temporal and distance gait factors in below-knee amputees’,Phys. Ther.,57, pp. 898–904

    Google Scholar 

  • Saunders, J. B. D. M., Inman, V. T., andEberhart, H. D. (1953): ‘The major determinants in normal and pathological gait’,J. Bone Joint Surg.,4-A, pp. 543–558

    Google Scholar 

  • Smidt, G. L., Arora, J. S., andJohnston, R. C. (1971): ‘Accelerographic analysis of several types of walking’,Am. J. Phys. Med.,50, p. 285

    Google Scholar 

  • Smidt, G. L., Deusinger, R. H., Arora, J., andAlbright, J. P. (1977): ‘An automatic accelerometry system for gait analysis’,J. Biomech.,10, pp. 367–375

    Article  Google Scholar 

  • Spivack, B. S. (Ed.) (1995): ‘Evaluation and management of gait disorders’ (Marcel Dekker Inc., New York)

    Google Scholar 

  • Sutherland, D. H., Kaufman, K. R., andMoitoza, J. R. (1994): ‘Kinematics of normal human walking’ inRose, J., Ralston, H. J., andGamble, J. G. (Eds): ‘Human walking’ (Williams & Wilkins, Baltimore), pp. 23–44

    Google Scholar 

  • van Emmerik, R. E. A., andWagenaar, R. C. (1996): ‘Effects of walking velocity on relative phase dynamics in the trunk in human walking’,J. Biomech.,29, pp. 1175–1184

    Google Scholar 

  • Veltink, P. H., Bussmann, H. B. J., Vries De, W., Martens, W. L. J., andvan Lummel, R. C. (1996): ‘Detection of static and dynamic activities using uniaxial accelerometers’,IEEE Rehabil. Eng.,4, pp. 375–385

    Google Scholar 

  • Wagenaar, R. C., andBeek, W. J. (1992): ‘Hemiplegic gait: a kinematic analysis using walking speed as a basis’,J. Biomech.,25, pp. 1007–1115

    Article  Google Scholar 

  • Whittle, M. W. (1996): ‘Gait analysis; an introduction’ (Butterworth-Heineman, Oxford)

    Google Scholar 

  • Willemsen, A. T., Bloemhof, F., andBoom, H. B. (1990): ‘Automatic stance-swing phase detection from acccelerometer data for peroneal nerve stimulation’,IEEE Trans.,BME-37, pp. 1201–1208

    Google Scholar 

  • Winter, D. A. (1990): ‘Biomechanics and motor control of human movement’ (John Wiley & Sons, New York)

    Google Scholar 

  • Wu, G. (1994): ‘A review of body segmental displacement, velocity, and acceleration in human gait’ inCraik, R. L., andOatis, C. A. (Eds): ‘Gait analysis, theory and application’ (Mosby, St. Louis), pp. 205–222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. J. Bussmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussmann, J.B.J., Damen, L. & Stam, H.J. Analysis and decomposition of signals obtained by thigh-fixed uni-axial accelerometry during normal walking. Med. Biol. Eng. Comput. 38, 632–638 (2000). https://doi.org/10.1007/BF02344868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344868

Keywords

Navigation