Skip to main content
Log in

Selecting relevant electrode positions for classification tasks based on the electro-encephalogram

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The aim is to describe a general approach to determining important electrode positions when measured electro-encephalogram signals are used for classification. The approach is exemplified in the frame of the brain-computer interface, which crucially depends on the classification of different brain states. To classify two brain states, e.g. planning of movement of right and left index fingers, three different approaches are compared: classification using a physiologically motivated set of four electrodes, a set determined by principal component analysis and electrodes determined by spatial pattern analysis. Spatial pattern analysis enhances the classification rate significantly from 61.3±1.8% (with four electrodes) to 71.8±1.4%, whereas the classification rate using principal component analysis is significantly lower (65.2±1.4%). Most of the 61 electrodes used have no influence on the classification rate, so that, in future experiments, the setup can be simplified drastically to six to eight electrodes without loss of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C., Devulapalli, S., andStolz, E. (1995): ‘EEG signal classification with different signal representations’ inGirosi, F., Manolakos, J. M. E., andWilson, E. (Eds.): ‘Neural networks for signal processing V’ (IEEE Press), pp. 475–483

  • Cerutti, S., Bersani, V. A. C., andD. L. (1987): ‘Analysis if visual evoked potentials through Wiener filtering applied to a small number of sweeps’,J. Biomed. Eng.,9, pp. 3–12

    Google Scholar 

  • Cheyne, D., Weinberg, H., Gaetz, W., andJantzen, K. (1995): ‘Motor cortex activity and predicting side of movement: neural network and dipole analysis of pre-movement magnetic fields’,Neurosci. Lett.,188, pp. 81–84

    Article  Google Scholar 

  • Deecke, L. andKornhuber, H. (1977): ‘Cerebral potentials and the mitiation of voluntary movement’ inDesmedt, E. (Ed.), ‘Attention, voluntary contraction and event-related cerebral potentials’ (Karger, Basel), pp. 132–150

    Google Scholar 

  • Duda, R. O. andHart, P. E. (1973): ‘Pattern classification and scene analysis’ (John Wiley & Sons, New York)

    Google Scholar 

  • Feige, B., Kristeva-Feige, R., Rossi, S., Pizzella, V., andRossini, P. (1996): ‘Neuromagnetic study of movement-related changes in rhythmic brain activity’,Brain Res.,734, pp. 252–260

    Article  Google Scholar 

  • Fukunaga, K. (1990): ‘Introduction to statistical pattern recognition’ (Academic Press, Boston)

    Google Scholar 

  • Heinze, H., andKünkel, H. (1984): ‘ARMA-filtering of evoked potentials’,Methods Inf. Med.,23, pp. 29–36

    Google Scholar 

  • Hjorth, B. (1975): ‘An on-line transformation of EEG scalp potentials into orthogonal source derivations’,Electroenceph. Clin. Neurophysiol.,39, pp. 526–530

    Article  Google Scholar 

  • Jasper, H. (1974): ‘Handbook of electroencephalography and clinical neurophysiology 3, Appendix III: The 10–20 electrode system of the International Federation’ (Elsevier, Amsterdam)

    Google Scholar 

  • Kalcher, J., Flotzinger, D., Neuper, C., Gölly, S. andPfurtscheller, G. (1996): ‘Graz brain-computer interface II: towards communication between humans and computers based on online classification of three different EEG patterns’,Med. Biol. Eng. Comput.,34, pp. 382–388

    Google Scholar 

  • Koles, Z., Lazar, M., andZhou, S. (1990): ‘Spatial patterns underlying population differences in the background EEG’,Brain Topograph.,2, pp. 275–284

    Google Scholar 

  • Krieger, S., Timmer, J., Lis, S., andOlbrich, H. (1994): ‘Some considerations on estimating event-related brain signals’,J. Neural Transm.,99, pp. 103–129

    Google Scholar 

  • Kristeva, R., Keller, E., Deecke, L., andKronhuber, H. (1979): ‘Cerebral potentials preceding unilateral and simultaneous bilateral finger movements’,Electroenceph. Clin. Neurophysiol.,47, pp. 229–238

    Article  Google Scholar 

  • Pfurtscheller, G., andAranibar, A. (1978): ‘Evaluation of event related desynchronisation (ERD) preceding and following voluntary self-paced movement’,Electroenceph. Clin. Neurophysiol.,46, pp. 138–146

    Google Scholar 

  • Pfurtscheller, G., Flotzinger, D., Mohl, W., andPeltoranta, M. (1991): ‘Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks’,Electroenceph. Clin. Neurophysiol.,82, pp. 313–315

    Google Scholar 

  • Salmelin, R., andHari, R. (1994): ‘Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement’,Neuroscience,60, pp. 537–550

    Article  Google Scholar 

  • van Leeuwen, W. S., Wieneke, G., Spoelstra, P., andVersteeg, H. (1977): ‘Lack of bilateral coherence of mu rhythm’,Electroenceph. Clin. Neurophysiol.,44, pp. 140–146

    Google Scholar 

  • Wolpaw, J., McFarland, D., Neat, G., andForneris, C. (1990): ‘An EEG-based brain-computer interface for cursor control’,Electroenceph. Clin. Neurophysiol.,78, pp. 252–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, T., Ball, T., Kristeva-Feige, R. et al. Selecting relevant electrode positions for classification tasks based on the electro-encephalogram. Med. Biol. Eng. Comput. 38, 62–67 (2000). https://doi.org/10.1007/BF02344690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344690

Keywords

Navigation