Skip to main content
Log in

L- and D-tryptophan aminotransferases from maize coleoptiles

  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Two forms of L-tryptophan aminotransferases (L-TAT-1 and L-TAT-2) and one D-tryptophan aminotransferase (D-TAT) were separated from maize coleoptiles by using L- and D-tryptophan as amino group donors. The enzymes were partially purlfied by hydrophobic and gel filtration column chromatographies. L-TAT-1 and L-TAT-2 had similar properties, showing optimum pH at 8–9 and a high optimum temperature of 50–60 C for catalytic activity. As the amino group acceptor for these two enzymes, α-keto glutaric acid was more effective than pyruvic, oxaloacetic and glyoxylic acids. The molecular masses of L-TAT-1 and L-TAT-2 estimated by gel filtration were approximately 80 kDa and 45 kDa, respectively. D-TAT had an optimum pH similar to those of L-TATs, but the optimum temperature was conslderably lower (30 C). Pyruvic acid was an effective amino group acceptor for D-TAT, whereas oxaloacetic and α-keto glutaric acids were not. D-Cycloserine completely inhibited the activity. The molecular mass of D-TAT was approximately 55 kDa. These three TATs required pyridoxal-5-phosphate for their catalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AT:

aminotransferase

HPLG:

high performance liquid chromatography

α:

KG

α:

keto glutaric acid

PLP:

pyridoxal-5-phosphate

TAT:

tryptophan aminotransferase

References

  • Atsumi, S., Kuralshi, S. andHayashi, T. 1976. An improvement of auxin extraction procedure and its application to cultured plant cells. Planta129: 245–247.

    Article  CAS  Google Scholar 

  • Durham, J.I., Morgan, P.W., Prescott, J.M. andLyman, C.M. 1973. An aminotransferase specific for the D-enantimorph of methionine. Phytochem.12: 2123–2126.

    Article  CAS  Google Scholar 

  • El Bahr, M.K., Kutáćek, M. andOpatrný, Z. 1987. L-Tryptophan aminotransferase and L-tryptophan dehydrogenase, enzymes of IAA synthesis, in normal and tumorous tobacco tissue cultures. Biochem. Physiol. Pflanzen.182: 213–222.

    Google Scholar 

  • Forest, J.C. andWightman, F. 1972. Amino acid metabolism in plants. III. Purification and some properties of a multispecific aminotransferase isolated from bushbean seedlings (Phaseolus vulgaris L.). Can. J. Biochem.50: 813–829.

    CAS  PubMed  Google Scholar 

  • Forest, J.C. andWightman, F. 1973. Amino acid metabolism in plants. IV. Kinetic studies with a multispecific aminotransferase purified from bush-bean seedlings (Phaseolus vulgaris L.). Can. J. Biochem.51: 332–343.

    CAS  PubMed  Google Scholar 

  • Gamborg, O.L. 1965. Transamination in plants. The specificity of an aminotransferase from mung bean. Can. J. Biochem.43: 723–730.

    CAS  PubMed  Google Scholar 

  • Gibson, R.A., Barrett, G. andWightman, F. 1972b. Biosynthesis and metabolism of indol-3yl-acetic acid. III. Partial purification and properties of a tryptamine-forming L-tryptophan decarboxylase from tomato shoots. J. Exp. Bot.23: 775–786.

    CAS  Google Scholar 

  • Gibson, R.A., Schneider, A. andWightman, F. 1972a. Biosynthesis and metabolism of indol-3yl-acetic acid. II.In vivo experiments with C-labelled precursors of IAA in tomato and barley shoots. J. Exp. Bot.23: 381–399.

    CAS  Google Scholar 

  • Givan, C.V. 1980. Aminotransferases in higher plants.In B.J. Miflin, ed. The Biochemistry of Plants, Vol. 5, pp. 329–357. Academic Press, New York.

    Google Scholar 

  • Koshiba, T. andLino, M. 1989. IAA biosynthesis in maize coleoptiles and pea plumules.In M. Tazawa, M. Katsumi, Y. Masuda and H. Okamoto, eds., Plant Water Relations and Growth under Stress. Myu K.K., Tokyo pp. 404–406.

    Google Scholar 

  • Law, D.M. 1987. Gibberellin-enhanced indole-3-acetic acid biosynthesis: D-Tryptophan as the precursor of indole-3-acetic acid. Physiol. Plant.70: 626–632.

    CAS  Google Scholar 

  • Lin, E.C.C., Pitt, B.M., Civen, M. andKnox, W.E. 1958. The assay of aromatic amino acid transaminations and keto acid oxidation by the enol borate-tautomerase method. J. Biol. Chem.233: 668–673.

    CAS  PubMed  Google Scholar 

  • Matheron, M.E., andMoore, T.C. 1973. Properties of an aminotransferase of pea (Pisum sativum L.). Plant Physiol.52: 63–67.

    CAS  Google Scholar 

  • McQueen-Mason, S.J., andHamilton, R.H. 1989. The biosynthesis of indole-3-acetic acid from D-tryptophan in alaska pea plastids. Plant Cell Physiol.30: 999–1005.

    CAS  Google Scholar 

  • Noguchi, T., andHayashi, S. 1980. Peroxisomal localization and properties of tryptophan aminotransferase in plant leaves. J. Biol. Chem.255: 2267–2269.

    CAS  PubMed  Google Scholar 

  • Ogawa, T., andFukuda, M. 1973. Occurrence of D-amino acid aminotransferase in pea seedlings. Biochem. Biophys. Res. Comm.52: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, G., Crozier, A. andErnstsen, A. 1987. Indole-3-acetic acid and related compounds.In L. Rivier and A. Crozier, eds., Principles and Practice of Plant Hormone Analysis. Vol. 2, Academic Press, London, pp. 169–301.

    Google Scholar 

  • Suzuki, Y., Kamisaka, S., Yanagisawa, H., Miyata, S. andMasuda, Y. 1981. Effect of light on growth and metabolic activities in pea seedlings. II. Changes in the IAA content and activities of enzymes involved in the IAA biosynthesis during growth. Biochem. Physiol. Pflanzen.176: 35–43.

    CAS  Google Scholar 

  • Thorne, C.B., Gomez, C.G. andHousewright, R.D. 1955. Transamination of D-amino acids by Bacillus subtilis. J. Bacteriol.69: 357–362.

    CAS  PubMed  Google Scholar 

  • Truelsen, T.A. 1972. Indole-3-pyruvic acid as an intermediate in the conversion of tryptophan to indole-3-acetic acid. I. Some characteristics of tryptophan transaminase from mung bean seedlings. Physiol. Plant.26: 289–295.

    CAS  Google Scholar 

  • Truelsen, T.A. 1973. Indole-3-pyruvic acid as an intermediate in the conversion of tryptophan to indole-3-acetic acid. II. Distribution of tryptophan transaminase activity in plants. Physiol. Plant.28: 67–70.

    CAS  Google Scholar 

  • Tsurusaki, K., Watanabe, S., Sakurai, N. andKuraishi, S. 1990. Conversion of D-tryptophan to indole-3-acetic acid in coleoptiles of a normal and a semi-dwarf barley (Hordeum vulgare) strain. Physiol. Plant.79: 221–225.

    Article  CAS  Google Scholar 

  • Vacková, K., Mehta, A. andKutáček, M. 1985. Tryptophan aminotransferase and tryptophan dehydrogenase activities in some cell compartments of spinach leaves: the effect of calcium ions on tryptophan dehydrogenase. Biol. Plant.27: 154–158.

    Google Scholar 

  • Wightman, F. andForest, J.C. 1978. Properties of plant aminotransferases. Phytochem.17: 1455–1471.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koshiba, T., Mito, N. & Miyakado, M. L- and D-tryptophan aminotransferases from maize coleoptiles. J. Plant Res. 106, 25–29 (1993). https://doi.org/10.1007/BF02344369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344369

Key words

Navigation