Skip to main content
Log in

Histopathological evaluation of retinal damage during intraocular hypertension in rabbit: Involvement of ganglion cells and nerve fiber layer

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

• Background: Current clinical tests do not detect glaucomatous signs until the onset of substantial retinal damage. Therefore animal models are required to investigate the very early histopathological alterations in glaucoma disease. We used an experimental model of intraocular hypertension to compare early changes in retinal ganglion cell (RGC) density with the thickness of the nerve fiber layer (NFL). • Methods: Methylcellulose 2% was injected into the anterior chamber of 18 eyes of 18 New Zealand albino rabbits. Intraocular pressure was measured 6 h after the injection and thence-forth once a day using a Shiötz tonometer. Histopathological analysis was performed on days 4, 10, and 15 following the induction of hypertension (six eyes for each group). Sections from the upper temporal retina were stained with hematoxylin-eosin and immunohistochemically using a polyclonal antibody PGP 9.5 to identify RGC. An image analysis system was used to evaluate the RGC and the thickness of the NFL.• Results: We observed a significant increase in intraocular pressure until the end of the experiment. Histological analysis showed, after 10 days of ocular hypertension, a significant decrease in RGC density (P<0.05) and a significant increase (P<0.05) in glial cell density. We found a significant correlation between RGC loss and cell area at 4 days (P<0.01; Cc=0.86) and at 10 days (P<0.002; Cc=0.91) of intraocular hypertension. We did not observe a significant decrease in the NFL thickness until 10 days of intraocular hypertension. • Conclusions: Our study confirms the size-dependent RGC loss during intraocular hypertension and shows no early decrease in NFL thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airaksinen PJ, Heijl A (1983) Visual field and retinal NFL in early glaucoma after optic disc hemorrhage. Acta Ophthalmol 61: 186–194

    CAS  Google Scholar 

  2. Airaksinen PJ, Nieminen H (1985) Retinal NFL photography in glaucoma. Ophthalmology 92: 877–879

    CAS  PubMed  Google Scholar 

  3. Airaksinen PJ, Drance SM, Douglas GR, et al (1985) Visual field and retinal NFL comparisons in glaucoma. Arch Ophthalmol 103: 205–207

    CAS  PubMed  Google Scholar 

  4. Asai T, Katsumori N, Mizokami K (1987) RGC damage in human glaucoma. I. Studies on the somal diameter. Folia Ophthalmol Jpn 38: 701

    Google Scholar 

  5. Atkin A, Bodis-Wollner I, Wolkstein M, et al (1979) Abnormalities of central contrast sensitivity in glaucoma. Am J Ophthalmol 88: 205

    CAS  PubMed  Google Scholar 

  6. Bonfanti L, Candeo P, Piccinini M, Carmignoto G, Comelli MC, Ghidella S, Bruno R, Gobetto A, Merighi A (1992) Distribution of protein gene product 9.5 (PGP 9.5) in the vertebrate retina: evidence that immunoreactivity is restricted to mammalian horizontal and ganglion cells. J Comp Neurol 322: 35–44

    Article  CAS  PubMed  Google Scholar 

  7. Caprioli J (1991) The contour of juxtapapillary nerve fiber layer in glaucoma. Ophthalmology 97: 358–366

    Google Scholar 

  8. Caprioli J, Miller JM (1989) Measurement of relative nerve fiber layer surface height in glaucoma. Ophthalmology 96: 633–641

    CAS  PubMed  Google Scholar 

  9. Dandona L, Hendrickson A, Quigley HA (1991) Selective effects of experimental glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate nucleus. Invest Ophthalmol Vis Sci 32: 1593–1599

    CAS  PubMed  Google Scholar 

  10. Doran JF, Jackson P, Kynoch PAM, Thompson RJ (1983) Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40: 1542–1547

    CAS  PubMed  Google Scholar 

  11. Drum B, Armaly M, Huppert W (1986) Scotopic sensitivity loss in glaucoma. Arch Ophthalmol 104: 712

    CAS  PubMed  Google Scholar 

  12. Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32: 484–491

    CAS  PubMed  Google Scholar 

  13. Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34: 395–400

    CAS  PubMed  Google Scholar 

  14. Grehn F, Prost M (1983) Function of retinal nerve fiber depends on perfusion pressure: neurophysiologie investigation during intraocular pressure elevation. Invest Ophthalmol Vis Sci 24: 347–353

    CAS  PubMed  Google Scholar 

  15. Hoyt WF, Newman NM (1972) The earliest observable defect in glaucoma? Lancet 1: 692–693

    CAS  PubMed  Google Scholar 

  16. Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropa thy, disc edema, and toxic neuropathy. Arch Ophthalmol 100: 135

    CAS  PubMed  Google Scholar 

  17. Quigley HA, Sanchez RM, Dunkelberger GR, L'Hernault NL, Baginski TA (1987) Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci 28: 913

    CAS  PubMed  Google Scholar 

  18. Quigley HA, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causes selectively greater loss of large optic nerve fibers. Ophthalmology 95: 357

    CAS  PubMed  Google Scholar 

  19. Quigley HA, Dunkelberger GR, Green WR (1989) Study of RGC atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107: 453

    CAS  PubMed  Google Scholar 

  20. Quigley HA, Katz J, Derick RJ, et al (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99: 19–28

    CAS  PubMed  Google Scholar 

  21. Sommer A, Miller NR, Pollack I, et al (1977) The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 95: 2149–2156

    CAS  PubMed  Google Scholar 

  22. Sommer A, Katz J, Quigley HA, et al (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109: 77–83

    CAS  PubMed  Google Scholar 

  23. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5, a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278: 224–228

    Article  CAS  PubMed  Google Scholar 

  24. Tuulonen A, Lehtola J, Airaksinen PJ (1993) Nerve fiber layer defects with normal visual fields. Ophthalmology 100: 587–598

    CAS  PubMed  Google Scholar 

  25. Tyler CW (1981) Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 20: 204

    CAS  PubMed  Google Scholar 

  26. Wilkinson KD, Lee K, Deshpande S, Deurksen-Hughes, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246: 670–673

    CAS  PubMed  Google Scholar 

  27. Zhu MD, Cai FY (1992) Development of experimental chronic intraocular hypertension in the rabbit. Aust NZ J Ophthalmol 20: 225–234

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manni, G., Lambiase, A., Centofanti, M. et al. Histopathological evaluation of retinal damage during intraocular hypertension in rabbit: Involvement of ganglion cells and nerve fiber layer. Graefe's Arch Clin Exp Ophthalmol 234 (Suppl 1), S209–S213 (1996). https://doi.org/10.1007/BF02343074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02343074

Keywords

Navigation