Skip to main content
Log in

The complex clinical and genetic classification of inherited ataxias. I. Dominant ataxias

  • Review
  • Published:
The Italian Journal of Neurological Sciences Aims and scope Submit manuscript

Abstract

The clinical classification of autosomal dominant cerebellar ataxias (ADCAs) is intricate due to the variable and unpredictable association of signs and symptoms of central nervous system (CNS) and peripheral nervous system (PNS) deterioration during the life of a patient. However, for many purposes, particularly patient management, clinical systematics is the most useful method for labelling patients; in some instances there is no basis for any more fundamental classification of phenotypes. On the other hand, recent molecular-genetic approaches to dominant ataxias have had a profound impact in nosology, diagnostic procedures and the management of patients, since they are based on the fact that all mendelian neurological diseases can be precisely classified according to the locus involved as well as the particular mutant allele at that locus. Therefore, a clinical and genetic classification of dominant ataxias is herewith proposed as the best nosographical choice. Clinical, neuropathological, genetic, and pathogenetic aspects of ADCAs are reviewed and discussed to help the clinical neurologist guide diagnostic procedures and manage ataxic patients.

Sommario

La classificazione clinica delle atassie cerebellari dominanti autosomiche (ADCA) è intrinsecamente complessa poiché i segni e i sintomi di sofferenza del sistema nervoso centrale e periferico si associano in modo variabile e spesso imprevedibile durante la vita dei pazienti affetti da diverse forme dominanti di atassia. Tuttavia, in assenza di criteri più stringenti per una precisa nosografia, una distinzione semiologica basata sui principali segni clinici è il metodo più utile per un primo inquadramento diagnostico dei malati. Le informazioni di genetica molecolare ottenute recentemente nelle atassie dominanti hanno modificato questa pur utile nosografia, perché portano il contributo di un dato biologico fondamentale consistente nel fatto the ogni malattia ereditaria può essere precisamente classificata sulla base sia del locus genetico coinvolto sia della mutazione eziologicamente responsabile. Sulla base di queste semplici considerazioni si propone una classificazione clinica e genetica delle atassie dominanti. I principali aspetti clinici, neuropatologici, genetici, sono presentati insieme ad una discussione sugli aspetti patogenetici delle ADCA per fornire al neurologo clinico una guida razionale e aggiornata ally diagnosi e alla gestione dei pazienti con atassia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harding AE (1983) Classification of hereditary ataxias and paraplegias. Lancet i:1151–1155

    Google Scholar 

  2. Hammans SR (1996) The inherited ataxias and the new genetics. J Neurol Neurosurg Psychiatry 61:327–332

    CAS  PubMed  Google Scholar 

  3. Hardy J, Gwinn-Hardy K (1998) Genetic classification of primary neurodegenerative disease. Science 282:1075–1079

    Article  CAS  PubMed  Google Scholar 

  4. Zoghbi HY, Jodice C, Sandkuijl LA, Kwiatkowski TJ, McCall AE, Huntoon SA, Lulli P, Spadaro M, Litt M, Cann HM, Frontali M, Terrenato L (1991) The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. Am J Hum Genet 49:23–30

    CAS  PubMed  Google Scholar 

  5. Jodice C, Frontali M, Persichetti F, Novelletto A, Pandolfo M, Spadaro M, Giunti P, Schinaia G, Lulli P, Malaspina P, Plasmati R, Tola R, Antonelli A, Di Donato S, Morocutti C, Weissenbach J, Camm HM, Terrenato L (1993) The gene for spinal cerebellar ataxia 1 (SCAT) is flanked by two closely linked highly polymorphic microsatellite loci. Hum Mol Genet 2(9):1383–1387

    CAS  PubMed  Google Scholar 

  6. Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L, Scheufler K, Riley B, Alotey R, Nothers C, Hillermann R, Lunkes A, Khati C, Stevanin G, Hernandez A, Magarino C, Klockgether T, Durr A, Chneiweiss H, Enczmann J, Farrall M, Beckmann J, Mullan M, Wernet P, Agid Y, Freund H-J, Williamson R, Auburger G, Chamberlain S (1993) Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q2324.1. Nat Genet 4:295–299

    Article  CAS  PubMed  Google Scholar 

  7. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, Shimazaki H, Soutome M, Endo K, Ohta S, Kagawa Y, Kanazawa I, Mizuno Y, Yoshida M, Yuasa T, Horikawa Y, Oyanagi K, Nagai H, Kondo T, Inuzuka T, Onodera O, Tsuji S (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 4:300–303

    Article  CAS  PubMed  Google Scholar 

  8. Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert ME, Kaplan C, Ptacek LJ (1996) Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): Clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 59:392–399

    CAS  PubMed  Google Scholar 

  9. Teh BT, Silburn P, Lindblad K, Betz R, Boyle R, Schalling M, Larsson C (1995) Familial periodic cerebellar ataxia without myokymia maps to a 19-cM region on 19p13. Am J Hum Genet 56:1443–1449

    CAS  PubMed  Google Scholar 

  10. Zoghbi HY (1996) The expanding world of ataxins. Nat Genet 14:237–238

    Article  CAS  PubMed  Google Scholar 

  11. Orr HT, Chung M, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beauder AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  CAS  PubMed  Google Scholar 

  12. Banfi S, Servadio A, Chung M, Kwiatkowski TJ Jr, McCall AE, Duvick Shen Y, Roth EJ, Orr HT, Zoghbi HY (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520

    Article  CAS  PubMed  Google Scholar 

  13. Ranum LPW, Lundgren JK, Schut LJ et al (1995) Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia. Am J Hum Genet 57:603–608

    CAS  PubMed  Google Scholar 

  14. Chung M, Ranum LPW, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nat Genet 5:254–258

    Article  CAS  PubMed  Google Scholar 

  15. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takanashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284

    Article  CAS  PubMed  Google Scholar 

  16. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier J-M, Weber C, Mandel J-L, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285–291

    Article  CAS  PubMed  Google Scholar 

  17. Pulst S-M, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, Lopez-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, Dejong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276

    Article  CAS  PubMed  Google Scholar 

  18. Schöls L, Gispert S, Vorgerd M et al (1997) Spinocerebellar ataxia type 2. Genotype and phenotype in German kindreds. Arch Neurol 54:1073–1080

    PubMed  Google Scholar 

  19. Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM (1997) The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 60:842–850

    CAS  PubMed  Google Scholar 

  20. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  CAS  PubMed  Google Scholar 

  21. Maruyama H, Nakamura S, Matsuyama Z et al (1995) Molecular features of the CAG repeats and clinical manifestation of Machado-Joseph disease. Hum Mol Genet 4:807–812

    CAS  PubMed  Google Scholar 

  22. Schols L, Vieira-Saecker AMM, Schols S, Przuntek H, Epplen JT, Riess O (1995) Trinuclectide expansion within the MJDI gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet 4(6):1001–1005

    CAS  PubMed  Google Scholar 

  23. Giunti P, Sweeney MG, Harding AE (1995) Detection of the Machado-Joseph disease/spinocerebellar ataxia three trinucleotide repeat expansion in families with autosomal dominant motor disorders, including the Drew family of Walworth. Brain 118:1077–1085

    PubMed  Google Scholar 

  24. Matilla T, McCall A, Subramony SH, Zoghbi HY (1995) Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol 38:68–72

    Article  CAS  PubMed  Google Scholar 

  25. Lunkes A, Mandel JL (1997) Polyglutamines, nuclear inclusions and neurodegeneration. Nat Med 3:1201–1202

    Article  CAS  PubMed  Google Scholar 

  26. Brice A (1998) Unstable mutations and neurodegenerative disorders. J Neurol 505–510

  27. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6)associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    Article  CAS  PubMed  Google Scholar 

  28. Gomez CM, Thompson RM, Gammack JT, Perlman SL, Dobyns WB, Truwit CL, Zee DS, Clark HB, Anderson JH (1997) Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann Neurol 42:933–950

    Article  CAS  PubMed  Google Scholar 

  29. Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O (1997) Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes? Ann Neurol 42:924–932

    CAS  PubMed  Google Scholar 

  30. Stevanin G, Durr A, David G, Didierjean O, Cancel G, Rivaud S, Tourbah A, Warter J-M, Agid Y, Brice A (1997) Clinical and molecular features of spinocerebellar ataxia type 6. Neurology 49:1243–1246

    CAS  PubMed  Google Scholar 

  31. Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM (1997) Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 49:1247–1251

    CAS  PubMed  Google Scholar 

  32. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SMG, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen G-J B, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    Article  CAS  PubMed  Google Scholar 

  33. Jodice C, Mantuano E, Veneziano L, Trettel F, Sabbadini G, Calandriello L, Francia A, Spadaro M, Pierelli F, Salvi F, Ophoff RA, Frants RR, Frontali M (1997) Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 6(11):1973–1978

    Article  CAS  PubMed  Google Scholar 

  34. Gouw LG, Kaplan CD, Haines JH, Digre KB, Rutledge SL, Matilla A, Leppert M, Zoghbi HY, Ptacek LJ (1995) Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nat Genet 10:89–93

    Article  CAS  PubMed  Google Scholar 

  35. Benomar A, Krols L, Stevanin G, Cancel G, LeGuern E, David G, Ouhabi H, Martin JJ, Durr A, Zaim A, Ravisé N, Busque C, Penet C, Van Regemorter N, Weissenbech J, Yahyaoui M, Chkili T, Agid Y, Van Broeckhoven C, Brice A (1995) The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12-p21.1. Nat Genet 10:84–88

    Article  CAS  PubMed  Google Scholar 

  36. Lindblad K, Savontaus M-L, Stevanin G et al (1996) An expanded CAG sequence in spinocerebellar ataxia type 7. Genome Res 6:965–971

    CAS  PubMed  Google Scholar 

  37. David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    Article  CAS  PubMed  Google Scholar 

  38. Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM (1994) Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 8:280–284

    Article  CAS  PubMed  Google Scholar 

  39. Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140

    Article  CAS  PubMed  Google Scholar 

  40. Lubbers WJ, Brunt ERP, Scheffer H, Litt M, Stulp R, Browne DL, van Weerden TW (1995) Hereditary myokymia and paroxysmal ataxia linked to chromosome 12 is respon sive to acetazolamide. J Neurol Neurosurg Psychiatry 59:400–405

    CAS  PubMed  Google Scholar 

  41. Komure O, Sano A, Nishino N, Yamauchi N, Ueno S, Kondoh K, Sano N, Takahashi M, Murayama N, Kondo I, Nagafuchi S, Yamada M, Kanasawa I (1995) DNA analysis in hereditary dentatorubral-pallidoluysian atrophy. Neurology 45:143–149

    CAS  PubMed  Google Scholar 

  42. Warner TT, Williams LD, Walker RWH, Flinter F, Robb SA, Bundey SE, Honavar M, Harding AE (1995) A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol 37(4):452–459

    Article  CAS  PubMed  Google Scholar 

  43. Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak-Vance MA, Vance JM (1994) The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 7:521–524

    Article  CAS  PubMed  Google Scholar 

  44. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanasawa I, Yamada M (1994) Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 6:14–18

    Article  CAS  PubMed  Google Scholar 

  45. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    Article  CAS  PubMed  Google Scholar 

  46. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA) Nat Genet 8:177–182

    Article  CAS  PubMed  Google Scholar 

  47. Komure O, Sano A, Nishino N, Yamauchi N, Ueno S, Kondoh K, Sano N, Takahashi M, Murayama N, Kondo I, Nagafuchi S, Yamada M, Kanasawa I (1995) DNA analysis in hereditary dentatorubral-pallidoluysian atrophy. Neurology 45:143–149

    CAS  PubMed  Google Scholar 

  48. Yasawa I, Nukina N, Hashida H, Goto J, Yamada M Kanasawa I (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 10:99–103

    Google Scholar 

  49. Villani F, Gellera C, Spreafico R, Castellotti B, Casazza M, Carrara F, Avanzini G (1998) Clinical and molecular findings in the first identified Italian family with dentatorubral-pallidoluysian atrophy. Acta Neurol Scand (in press)

  50. Robitaille Y, Schut L, Kish SJ (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol 90:572–581

    CAS  PubMed  Google Scholar 

  51. Durr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, Bellance R, Buisson G-G, Chneiweiss H, Dellanave J, Agid Y, Brice A, Vernant J-C (1995) Autosomal dominant cere bellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118:1573–1581

    PubMed  Google Scholar 

  52. Durr A, Stevanin G, Cancel G, Duyckaerts C, Abbas N, Didierjean O, Chneiweiss H, Benomar A, Lyon-Caen O, Julien J, Serdaru M, Penet C, Agid Y, Brice A (1996) Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 39:490–499

    Article  CAS  PubMed  Google Scholar 

  53. Rubinsztein DC, Amos W, Leggo J, Goodburn S, Ramesar RS, Old J, Bontrop R, McMahon R, Barton DE, Ferguson-Smith MA (1994) Mutational bias provides a model for the evolution of Huntington's disease and predicts a general increase in disease prevalence. Nat Genet 7:525–530

    Article  CAS  PubMed  Google Scholar 

  54. Kameya T, Abe K, Aoki M et al (1995) Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Neurology 45:1587–1594

    CAS  PubMed  Google Scholar 

  55. Giunti P, Sabbadini G, Sweeney MG et al (1998) The role of SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain 121:459–467

    Article  PubMed  Google Scholar 

  56. Silveira I, Lopes-Cendes I, Kish S et al (1996) Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology 46:214–218

    CAS  PubMed  Google Scholar 

  57. Pareyson D, Gellera C, Castellotti B, Antonelli A, Riggio MC, Mazzucchelli F, Girotti F, Pietrini V, Mariotti C, Di Donato S (1998) Clinical and molecular studies in 73 Italian ADCA I families; SCA I1and SCA 2 are the most common genotypes. J Neurol (in press)

  58. Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM (1997) Spinocerebella ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 49:1247–1251

    CAS  PubMed  Google Scholar 

  59. Pulst S-M, Nechiporuk A, Starkman S (1993) Anticipation in spinocerebellar ataxia type 2. Nat Genet 5:8–10

    Article  CAS  PubMed  Google Scholar 

  60. Chong SS, McCall AE, Cota J, Subramony SH, Orr HT, Hughes MR, Zoghbi HY (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCA 1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10:344–350

    Article  CAS  PubMed  Google Scholar 

  61. Lopes-Cendes I, Maciel P, Kish S, Gaspar C, Robitaille Y, Clark HB, Koeppen AH, Namce M, Schut L, Silveira I, Coutinho P, Sequeiros J, Rouleau GA (1996) Somatic mosaicism in the central nervous system in spinocerebellar ataxia type 1 and Machado-Joseph disease. Ann Neurol 40:199–206

    Article  CAS  PubMed  Google Scholar 

  62. Servadio A, Beena K, Armstrong D, Antalffy B, Orr HT, Zoghbi HY (1995) Expression analysis of the ataxin-1 protein in tissue from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 10:94–98

    Article  CAS  PubMed  Google Scholar 

  63. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck, Pittman RN (1997) Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41:453–462

    Article  CAS  PubMed  Google Scholar 

  64. Hurtley SM (1998) Neurodegeneration. Science 282:1071

    Article  CAS  Google Scholar 

  65. Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196–202

    Article  CAS  PubMed  Google Scholar 

  66. Burringht EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi HY, Orr HT (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–948

    Google Scholar 

  67. Matsumura R, Futamura N, Fujimoto Y, Yanagimoto S, Horikawa H, Suzumura A, Takayanagi T (1997) Spinocerebellar ataxia type 6. Molecular and clinical fea tures of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 49:1238–1243

    CAS  PubMed  Google Scholar 

  68. Perutz MF (1996) Glutamine repeats and inherited neurodegenerative diseases: molecular aspects. Curr Opin Struct Biol 6:848–858

    Article  CAS  PubMed  Google Scholar 

  69. Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389:971–974

    CAS  PubMed  Google Scholar 

  70. Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389:974–978

    CAS  PubMed  Google Scholar 

  71. Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel J-L, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    Article  CAS  PubMed  Google Scholar 

  72. Igarashi S, Koide R, Shimohata T, Yamada M, Hayashi Y, Takano H, Date H, Oyake M, Sato T, Egawa S, Ikeuchi T, Tanaka H, Nakano R, Tanaka K, Hozumi I, Inuzuka T, Takanashi H, Tsuji S (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18:111–117

    Article  CAS  PubMed  Google Scholar 

  73. Price DL, Sisodia SS, Borchelt DR (1998) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083

    Article  CAS  PubMed  Google Scholar 

  74. Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of Intranuclear inclusions. Cell 95:55–66

    Article  CAS  PubMed  Google Scholar 

  75. Koshy B, Matilla T, Burright EN, Merry DE, Fischbeck KH, Orr HT, Zoghbi HY (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet 5(9):1311–1318

    Article  CAS  PubMed  Google Scholar 

  76. Klement IA, Skinner PJ, Kayton MD, Yi H, Hersh SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA-1 transgenic mice. Cell 95:41–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Donato, S. The complex clinical and genetic classification of inherited ataxias. I. Dominant ataxias. Ital J Neuro Sci 19, 335–343 (1998). https://doi.org/10.1007/BF02341779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02341779

Key words

Navigation