Skip to main content
Log in

The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The purification and some molecular properties of six lysozymes from the gills of different mytilids and vesicomyids are described: they belong to the previously described Invertebrate lysozyme family. The predominance of the bacterial nutrition in these organisms seems to necessitate the presence of a lysozyme as in the case of the ruminant digestion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauchamp B, Harrison C, Nassichuck WW, Eliuk LS(1989) Lower cretaceous (Albian) serpulid-bivalve carbonate “mounds” related to hydrocarbon seep. Canadian Attic Archipelago. In: Geldsetzer HHet al. (eds) Reefs, Canada and adjacent area. Can Soc Petrol Geol Mem 13:706–712

  • Campbell KA (1992) Recognition of a Mio-Pliocene cold seep setting from the Northeast Pacific convergent margin, Washington USA. Palaios 7:422–433

    Google Scholar 

  • Cavanaugh CM (1993) Methanotroph-invertebrate symbioses in the marine environment: ultrastructural, biochemical and molecular studies. In: Microbial growth on C, compounds. Intercept, Andover, UK

    Google Scholar 

  • Childress JJ, Fisher CR (1992) The biology of hydroytermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–444

    Google Scholar 

  • Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants I. J Biol Chem 259:11607–11616

    CAS  PubMed  Google Scholar 

  • Fiala-Médioni A (1984) Mise en évidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de Mollusques bivalves de sources hydrothermales profondes. C R Acad Sci Paris 298(17):487–492

    Google Scholar 

  • Fiala-Médioni A, Felbeck H (1990) Autotrophic process in invertebrates-nutrition: bacterial symbiosis in bivalve molluscs. In: Mellinger J (ed) Animal nutrition and transport processes I. Nutrition in wild and domestic animals. Kinne RKH, Kinne-Saffran E, Beyenbech KM (eds) Comparative physiology. Basel, Karger 5:49–69

  • Fiala-Médioni A, Le Pennec M (1987) Trophic structural adaptations in relation with the bacterial association of bivalve molluscs from hydrothermal vents and subduction zones. Symbiosis 4:63–74

    Google Scholar 

  • Fiala-Médioni A, Felbeck H, Childress JJ, Fisher CR, Vetter RD (1990) Lysosomic resorption of bacterial endosymbionts in deep-sea bivalves. Endocytobiology IV. Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) INSA, Villeurbanne, France, pp 335–338

    Google Scholar 

  • Fiala-Médioni A, Michalski JC, Jollès J, Alonso C, Montreuil J (1994) Lysosomic and lysozyme activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci Paris 317:239–244

    Google Scholar 

  • Fisher CR (1990) Chemoamotrophic and methanotrophic symbiose in marine invertebrates. Aquatic Sci 2 (3,4): 399–436

    CAS  Google Scholar 

  • Gaillard C, Rolin Y (1988) Relation entre tectonic synsedimentaire et pseudobiohermes (Oxfordien de Beauvoisin-Drome-France). Un argument supplémentaire pour interpréter les pseudobiohermes comme formes au droit de sources marines. C R Acad Sci Paris Sér II 307:1265–1270

    Google Scholar 

  • Gaillard C, Rio M, Rolin Y, Roux M (1992) Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southern France compared to other world examples. Palaios 7:451–465

    Google Scholar 

  • Grassle JF (1986) The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol 23:301–362

    Google Scholar 

  • Jannash HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schelgel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publ Madison and Springer Verlag, Berlin, pp 147–166

    Google Scholar 

  • Jollès J, Jollès P (1975) The lysozyme ofAsterias rubens. Eur J Biochem 54:19–23

    PubMed  Google Scholar 

  • Jollès J, Jollès P, Bowman BH, Prager EM, Stewart CB, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28:528–535

    PubMed  Google Scholar 

  • Jolleès J, Prager EM, Alnemri ES, Jollès P, Ibrahimi IM, Wilson AC (1990) Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J Mol Evol 30:370–382

    CAS  Google Scholar 

  • Jollès P, Jollès J (1984) What's new in lysozyme research? Mol Cell Biochem 63:165–189

    Article  PubMed  Google Scholar 

  • Jollès P, Charlemagne D, Petit JF, Maire AC, Jollès J (1965) Biochimie comparée des lysozymes. Bull Soc Chim Biol 47:2241–2257

    Google Scholar 

  • Jollès P, Schoentgen F, Jòlles J, Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants II. J Biol Chem 259: 11617–11625

    PubMed  Google Scholar 

  • Laubier L (1989) Deep-sea ecosystems based on chemosynthetic processes: recent results on hydrothermal and cold seep biological assemblages. In: Ayala-Castanares A, Wooster W, Yànez-Arancibia A (eds) Oceanography 1988. UNAM Press, Mexico, DF, pp 129–148

    Google Scholar 

  • Lonsdale P (1977) Clustering of suspension-seeding macrobeuthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-sea Res 24:857–863

    Google Scholar 

  • McHenery, Allen JA, Birbeck TH (1986) Distribution of lysozyme-like activity in 30 bivalve species. Comp Biochem Physiol 85B(3):581–584

    CAS  Google Scholar 

  • Niitsuma N, Matsushima Y, Hitrata D (1989) Abyssal molluscan colony of Calyptogena in the Pliocene strata of the Miura Peninsula, Central Japan. Paleog Paleoclim Paleoecol 71:193–203

    Google Scholar 

  • Page HM, Fiala-Medioni A, Fisher CR, Childress JJ (1991) Experimental evidence for filter-feeding by the hydrothermal vent mussel,Bathymodiolus thermophilus. Deep Sea Res 38:1455–1461

    Google Scholar 

  • Pranal V (1995) Marqueurs et caractéristiques biochimiques des associations symbiotiques mollusques-battéries chimiosynthétiques. Thèse Doctorat Université Paris VI:1–184

    Google Scholar 

  • Reid RGB, Brand DG (1986) Sulfide-oxidation symbiosis in Lucinaceans: implications for bivalve evolution. Veliger 29:3–4

    Google Scholar 

  • Southward EC (1987) Contribution of symbiotic chemoautotrophs to the nutrition of benthic invertebrates. In: Sleigh MA, Harwood E (eds) Microbes in the sea. Harwood Ltd, New York, pp. 83–118

    Google Scholar 

  • Stewart CB, Schilling JW, Wilson AC (1987) Adaptative evolution in the stomach lysozymes of foregut fermenters. Nature 330:401–404

    CAS  PubMed  Google Scholar 

  • Taviani M (1994) The Calcari A Lucina macrofauna reconsidered—deep-sea faunal eases from Miocene-age cold vents in the Romagna Appennine, Italy. Geo Marine Lett 14:185–191

    CAS  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: P. Jollès

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jollès, J., Fiala-Médioni, A. & Jollès, P. The ruminant digestion model using bacteria already employed early in evolution by symbiotic molluscs. J Mol Evol 43, 523–527 (1996). https://doi.org/10.1007/BF02337523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337523

Key words

Navigation