Skip to main content
Log in

An ecosystem analysis of spider mite outbreaks: physiological stimulation or natural enemy suppression

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

A simulation model was used to assess the role of several mechanisms proposed to be responsible for spider mite outbreaks on cotton that are typically observed following applications of insecticides. Simulation results were compared to an outbreak that occurred after two pyrethroid applications on cotton in a controlled experiment in the San Joaquin Valley of California. In the model, physiological effects were simulated by increasing spider mite fecundity and decreasing developmental duration, whereas loss of natural enemies was simulated by increasing spider mite age-specific survival. At the levels simulated, survival had the greatest impact on maximum spider mite density, degree days (oD) to maximum density, and cumulative spider mite-oD, whereas fecundity had the least, and developmental duration had an intermediate effect. There were substantial two-way interactions among all three life history parameters, with age-specific survival having the most influence. Survival had the greatest effect on spider mite population dynamics when in combination with short developmental duration. The influence of developmental duration on maximum spider mite density was greater than comparable percentage changes in fecundity, an effect that was more pronounced at high than at low survival. Changing fecundity, developmental duration, or age-specific survival individually did not result in a spider mite outbreak of the magnitude observed in the field. However, changing these three parameters simultaneously, resulted in a simulated maximum density of 8,000/m2, which represents a 12-fold increase over the untreated control, and closely mimicked the previously observed field outbreak. It is proposed that spider mite outbreaks on cotton following insecticide applications are not solely the result of physiological stimulation, but are rather due to several life history parameters being affected simultaneously, with natural enemy-mediated survival having the greatest individual impact. Implications of chemically-induced phenomena affecting spider mite management on cotton are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AliNiazee, M.T. and Cranham, J.E., 1980. Effect of four synthetic pyrethroids on a predatory mite,Tryphlodromus pyri, and its prey,Panochyus ulmi, on apples in southeast England. Environ. Entomol., 9: 463–439.

    Google Scholar 

  • Al-Khafaf, S., Wierenga, P.J. and Williams, B.C., 1978. Evaporative flux from irrigated cotton as related to leaf area index, soil water, and evaporative demand. Agron. J., 70: 912–917.

    CAS  Google Scholar 

  • Allen, J.C., 1976. Modified sine wave method for calculating degree-days. Environ. Entomol., 5: 388–396.

    Google Scholar 

  • Andrewartha, H.G. and Birch, L.C., 1954. The Distribution and Abundance of Animals. University of Chicago Press, Chicago, 782 p.

    Google Scholar 

  • Baker, D.N., Hesketh, J.D. and Duncan, W.G., 1972. Simulation of growth and yield in cotton: I. Gross photosynthesis, respiration and growth. Crop Sci., 12: 431–435.

    Google Scholar 

  • Bartlett, B.R., 1968. Outbreaks of two-spotted spider mites and cotton aphids following pesticide treatment. I. Pest stimulation vs. natural enemy destruction as the cause of outbreaks. J. Econ. Entomol., 61: 297–303.

    CAS  Google Scholar 

  • Berry, J.S., Holtzer, T.O. and Ball, J.J., 1990. Ambulatory dispersal of spider mites (Acari: Tetranychidae) on whole untreated maize plants after exposure to fenvalerate and permethrin. J. Econ. Entomol., 83: 217–220.

    CAS  Google Scholar 

  • Blood, P.R. and Wilson, L.T., 1978. Field validation of a crop/pest management descriptive model. Proceedings SIMSIG-78, Simulation Conference. Australian National University, Canberra, pp. 91–94.

    Google Scholar 

  • Boykin, L.S. and Campbell, W.V., 1982. Rate of population increase of the two spotted spider mite (Acari: Tetranychidae) on peanut leaves treated with pesticides. J. Econ. Entomol., 75: 966–971.

    CAS  Google Scholar 

  • Brito, R.M., 1980. Factors affecting the distribution and abundance of three species ofTetranychus spider mites on cotton and the effect of their damage on transpiration and photosynthesis. Dissertation, University of California, Riverside, 125 p.

  • Carey, J.R., 1982a. Demography and population dynamics of the Mediterranean fruit fly. Ecological Modelling, 16: 125–150.

    Article  Google Scholar 

  • Carey, J.R., 1982b. Demography of the twospotted spider mite,Tetranychus urticae Koch. Oecologia, 52: 389–395.

    Article  Google Scholar 

  • Carey, J.R. and Bradley, J.W., 1982. Developmental rates, vital schedules, sex ratios, and life tables forTetranychus urticae, T. turkestani, andT. pacificus (Acarina: Tetranychidae) on cotton. Acarologia, 23: 333–345.

    Google Scholar 

  • Cole, L.C., 1954. The population consequences of life history phenomena. Q. Rev. Biol., 29: 103–137.

    Article  CAS  PubMed  Google Scholar 

  • Chaboussou, F., 1966. Nouveaux aspects de la phytiatrie et de la phytopharmacie. Le phenomene de la trophobiose. Proceedings FAO Symposium of Integrated Pest Control. Rome, 1: 33–61.

    Google Scholar 

  • Croft, B.A., 1990. Arthropod Biological Control Agents and Pesticides. Wiley, New York, 723 p.

    Google Scholar 

  • Davidson, N.A., Wilson, L.T., Hoffmann, M.P. and Zalom, F.G., 1990. Comparisons of temperature measurements from local weather stations and the tomato plant canopy: implications for crop and pest forecasting. J. Am. Soc. Hort. Sci., 115, 861–869.

    Google Scholar 

  • DeBach, P., 1974. Biological Control by Natural Enemies. Cambridge, London, 323 p.

  • Dittrich, V., Streibert, P. and Bathe, P.A., 1974. An old case reopened: mite stimulation by insecticide residues. Environ. Entomol. 3: 534–540.

    CAS  Google Scholar 

  • Donohue, D.J. and McPherson, R.M., 1990. Ovipositional response ofTetranychus urticae (Acari: Tetranychidae) to direct treatment and residue of pyrethroids on soybean. J. Entomol. Sci., 25, 158–169.

    Google Scholar 

  • Ehler, L.E. and Miller, J.C., 1978. Biological control in temporary agroecosystems. Entomophaga, 23: 207–212.

    Google Scholar 

  • Ehler, L.E. and van denBosch, R., 1974. An analysis of the natural biological control ofTrichoplusia ni (Lepidoptera: Noctuidae) on cotton in California. Can. Entomol., 106: 1067–1073.

    Google Scholar 

  • Eveleens, K.G., van denBosch, R. and Ehler, L.E., 1973. Secondary outbreak induction of beet armyworm by experimental insecticide applications in cotton in California. Environ. Entomol., 2: 497–503.

    CAS  Google Scholar 

  • Gerson, U. and Cohen, E., 1989. Resurgences of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Exp. Appl. Acarol., 6: 29–46.

    Article  CAS  Google Scholar 

  • Gonzalez, D. and Wilson, L.T., 1982. A foodweb approach to economic thresholds: a sequence of pests/predaceous arthropods on California cotton. Entomophaga 27 (Special Issue): 31–43.

    Google Scholar 

  • Grimes, D.W., 1986. Cultural techniques for management of pests in cotton. In: R.E. Frisbie and P.L. Adkisson (Editors), Integrated Pest Management on Major Agricultural Systems. Texas Agricultural Experiment Station MP-1616, pp. 365–382.

  • Gutierrez, A.P. and Curry, G.L., 1989. Conceptual framework for studying crop-pest systems. In: R.E.Frisbie, K.M.El-Zik and L.T.Wilson (Editors), Integrated Pest Management in Cotton Production. Wiley, New York, pp. 37–64.

    Google Scholar 

  • Gutierrez, A.P. and Regev, U., 1983. The economics of fitness and adaptedness: the interaction of sylvan cotton (Gossypium hirsutum L.) and the boll weevil (Anthonomus grandis Boh.)—an example. Oecol. Gen., 4: 271–287.

    Google Scholar 

  • Gutierrez, A.P. and Wilson, L.T., 1989. Development and use of pest models. In: R.E.Frisbie, K.M.El-ik and L.T.Wilson (Editors), Integrated Pest Management in Cotton Production. Wiley, New York, pp. 54–84.

    Google Scholar 

  • Gutierrez, A.P., Falcon, L.A., Loew, W., Leipzig, P.A. and van denBosch, R., 1975. An analysis of cotton production in California: a model for Acala cotton and the effects of defoliators on its yield. Environ. Entomol., 4: 125–136.

    Google Scholar 

  • Gutierrez, A.P., Pizzamiglio, M.A., DosSantos, W.J., Tennyson, R. and Villacorta, A.M., 1984. A general distributed delay time varying life table plant population model: Cotton (Gossypium hirsutum L.) growth and development as an exaple. Ecological Modelling, 26: 236–249.

    Article  Google Scholar 

  • Gutierrez, A.P., Schulthess, F., Wilson, L.T., Villacorta, A.M., Ellis, C.K. and Baumgaertner, J.U., 1987. Energy acquisition and allocation in plants and insects: A hypothesis for the possible role of hormones in insect feeding patterns. Can. Entomol., 119: 109–129.

    Google Scholar 

  • Hesketh, J.D., Baker, D.N. and Duncan, W.G., 1972. Simulation of growth and yield in cotton: II. Environmental control of morphogenesis. Crop Sci., 12: 436–439.

    Google Scholar 

  • Holtzer, T.O., Norman, J.M., Perring, T.M., Berry, J.S. and Heintz, J.C., 1988. Effects of microenvironment on the dynamics of spider-mite populations. Exp. Appl. Acarol., 4: 247–264.

    Article  Google Scholar 

  • Hoyt, S.C., Westigard, P.H. and Burts, E.C., 1978. Effects of two synthetic pyrethroids on the codling moth, pear psylla and various mite species in northwest apple and pear orchards. J. Econ. Entomol., 71: 431–434.

    CAS  Google Scholar 

  • Huffaker, C.B., van deVrie, M. and McMurtry, J.A., 1979. Ecology of tetranychid mites and their natual enemics: a review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia, 40: 391–458.

    Google Scholar 

  • Hull, L.A., Beers, E.H. and Meagher, R.L.Jr., 1985. Impact of selective use of the synthetic pyrethroid fenvalerate on apple pests and natural enemies in large-orchard trials. J. Econ. Entomol. 78, 163–168.

    CAS  Google Scholar 

  • Iftner, D.C. and Hall, F.R., 1983. Effects of fenvalerate and permethrin residues onTetranychus urticae Koch (Acari: Tetranychidae) dispersal behavior. Environ. Entomol., 12: 1782–1786.

    CAS  Google Scholar 

  • Iftner, D.C. and Hall, F.R., 1984. The effects of fenvalerate and permethrin residues onTetranychus urticae Koch fecundity and rate of development. J. Agric. Entomol., 1: 191–200.

    CAS  Google Scholar 

  • Jensen, M.E. and Haise, H.R., 1963. Estimating evapotranspiration from solar radiation. Journal Irrigation Drainage, 89: 15–41.

    Google Scholar 

  • Jones, V.P., 1990. Does pesticide-induced activity of twospotted spider mite (Acari: Tetranychidae) really contribute to population increases in orchards? J. Econ. Entomol., 83: 1847–1852.

    CAS  Google Scholar 

  • Jones, V.P., and Parrella, M.P., 1984. The sub-lethal effects of selected insecticides on life table parameters ofPanoncychus citri (Acari: Tetranychidae). Can. Entomol., 116: 1033–1040.

    CAS  Google Scholar 

  • Lentz, G.L., 1982. Insecticide treatments for plant bug control and their effects on beneficials, 1981. Insecticide and Acaricide Tests, 7: 160.

    Google Scholar 

  • Levins, R. and Wilson, M., 1980. Ecological theory and pest management. Ann. Rev. Entomol., 25: 287–308.

    Article  Google Scholar 

  • Lucky, T.D., 1968. Insect hormoligosis. J. Econ. Entomol., 61: 7–12.

    Google Scholar 

  • Maggaro, J.J. and Edelson, J.V., 1989. Thrips control, 1988. Insecticide and Acaricide Tests, 14: 131–132.

    Google Scholar 

  • Maggi, V.L. and Leigh, T.F., 1983. Fecundity response of the twospotted spider mite to cotton treated with methyl parathion or phosphoric acid. J. Econ. Entomol., 76: 20–25.

    CAS  Google Scholar 

  • Matsumura, F., 1985. Toxicology of Insecticides. Plenum, New York, 503 p.

    Google Scholar 

  • McKendrick, A.G., 1926. The application of mathematics to medical problems. Proceedings Edinbrough Mathematics Society, 33: 98–130.

    Google Scholar 

  • McMurtry, J.A., Huffaker, C.B. and van deVrie, M., 1970. Ecology of tetranychid mites and their natural enemies: a review. I. Tetranychid enemies: their biological characters and the impact of spray practices. Hilgardia, 40: 331–390.

    Google Scholar 

  • Miller, D.R., Weidhaas, D.E. and Hall, R.C., 1973. Parameter sensitivity in insect population modeling. J. Theor. Biol., 42: 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, R., 1973. Growth and population dynamics of a spider mite (Tetranychus urticae K., Acarina: Tetranychidae). Ecology, 54: 1349–1355.

    Google Scholar 

  • Monsi, M. and Saeki, T., 1953. Uber den lichtfaktor in den pflanzengessschaften und seine bedeutung für die stoffproducktion. Jap. J. Bot., 14: 22–52.

    Google Scholar 

  • Penman, D.R. and Chapman, R.B., 1988. Pesticide induced mite outbreaks: pyrethroids and spider mites. Exp. Appl. Acarol., 4: 265–276.

    Article  CAS  Google Scholar 

  • Penman, D.R., Chapman, R.B. and Bowie, M.H., 1986. Direct toxicity and repellent activity of pyrethroids againstTetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol., 79: 1183–1187.

    CAS  Google Scholar 

  • Plant, R.E. and Wilson, L.T., 1986. Models for age structural populations with distributed maturation rates. J. Math. Biol. 23: 247–262.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, H.T., Adkisson, P.L., Smith, R.F. and Frisbie, R.E., 1982. Cotton insect pest management. In: R.L.Metcalf and W.H.Luckman (Editors), Introduction to Insect Pest Management. Wiley, New York, pp. 375–441.

    Google Scholar 

  • Rock, G.C., 1979. Relative toxicity of two synthetic pyrethroids to a predatorAmblyseius fallacis and its preyTetranychus urticae. J. Econ. Entomol., 72: 292–294.

    Google Scholar 

  • Roush, R.T. and Hoy, M.A., 1978. Relative toxicity of permethrin to a predator,Metaseiulus occidentalis, and its prey,Tetranychus urticae. Environ. Entomol., 7: 287–288.

    CAS  Google Scholar 

  • Sabelis, M.W., 1985. Development. In: W.Helle and M.W.Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, pp. 43–53.

    Google Scholar 

  • SAS Institute, 1989. JMP User's Guide. SAS Institute Inc., Cary, N.C.

    Google Scholar 

  • Smith, R.F. and Hagen, K.S., 1959. The integration of chemical and biological control of the spotted alfalfa aphid: impact of commercial insecticide treatments. Hilgardia, 29: 131–154.

    CAS  Google Scholar 

  • Solomon, M.G., Cranham, J.E., Easterbrook, M.A. and Fitzgerald, J.D., 1989. Control of the pear psyllid,Cacopsylla pyricola, in south east England by predators and pesticides. Crop. Prot., 8: 197–205.

    CAS  Google Scholar 

  • Stone, N.D., Gutierrez, A.P., Getz, W.M. and Norgaard, R., 1986. Pink bollworm control in southwestern desert cotton. III. Strategies for control: an economic simulation study. Hilgardia, 54: 1–24.

    Google Scholar 

  • Tijerina-Chavez, A.D., 1982. Longevity and fecundity of the twospotted spider mite (Acarina: Tetranychidae) in relation to leaf age and fruiting condition of cotton. M.S. Thesis. University of California, Davis, 40 p.

  • Trichilo, P.J. and Leigh, T.F., 1985. The use of life tables to assess varietal resistance of cotton to spider mites. Entomol. Exp. Appl., 39: 27–33.

    Article  Google Scholar 

  • Trichilo, P.J. and Leigh, T.F., 1986. The impact of cotton plant resistance on spider mites and their natural enemies. Hilgardia, 54: 1–20.

    Google Scholar 

  • Trichilo, P.J., Wilson, L.T. and Gonzalez, D., 1990. Relative abundance of three species of spider mites (Acari: Tetranychidae) on cotton, as influenced by pesticides and time of establishment. J. Econ. Entomol. 83: 1604–1611.

    Google Scholar 

  • vonFoerster, H., 1959. Some remarks on changing populations. In: F.Stohlman (Editor), The Kinetics of Cellular Proliferation. Grune & Stratton, Inc., New York, pp. 382–407.

    Google Scholar 

  • Wilson, L.T., 1986. The compensatory response of cotton to leaf and fruit damage. Proceedings Beltwide Cotton Producers Research Conference. National Cotton Council, Memphis, pp. 149–153.

    Google Scholar 

  • Wilson, L.T., 1989. Changing perspectives on the use of simulation models in IPM. National IPM Symposium, Las Vegas. National IPM Coordinating Committee, New York State Agricultural Experiment Station, Cornell University, pp. 129–136.

  • Wilson, L.T., Corbett, A., Trichilo, P.J., Kerby, T.A., Plant, R.E. and Goodell, P., 1992. Strategic and tactical modelling: cotton-spider mite agroecosystem management. Exp. Appl. Acarol., 14: 357–370.

    Article  Google Scholar 

  • Wilson, L.T., Gonzalez, D., Leigh, T.F., Maggi, V., Foristiere, C. and Goodell, O., 1983. Withinplant distribution of spider mites (Acari: Tetranychidae) on cotton: A developing implementable monitoring program. Environ. Entomol., 12: 128–134.

    Google Scholar 

  • Wilson, L.T., Plant, R.E., Kerby, T.A., Zelinski, L. and Goodell, P.B., 1987. Transition from a strategic to a tactical crop and pest management model: use as an economic decision aid. Proceedings Beltwide Cotton Producers Research Conference. National Cotton Council, Memphis, pp. 207–212.

    Google Scholar 

  • Wilson, L.T., Smilanick, J.M., Hoffman, M.P., Flaherty, D.L. and Ruiz, S.M., 1988. Leaf nitrogen and position in relation to population parameters of pacific spider mite,Tetranychus pacificus (Acari: Tetranychidae) on grapes. Environ. Entomol., 17: 964–968.

    Google Scholar 

  • Wilson, L.T., Trichilo, P.J., Flaherty, D.L., Hanna, R. and Corbett, A., 1991a. Natural enemy-spider mite interactions: comments on implications for population assessment. Modern Acarology, 1: 167–173.

    Google Scholar 

  • Wilson, L.T., Trichilo, P.J. and Gonzalez, D., 1991b. Natural enemies of spider mites (Acari: Tetranychidae) on cotton: density regulation or casual association? Environ. Entomol. 20: 849–856.

    Google Scholar 

  • Wrensch, D.L., 1979. Components of reproductive success in spider mites. In: J.G.Rodriguez (Editor), Recent Advances in Acarology., Vol. 2 Academic, New York, pp. 155–164.

    Google Scholar 

  • Wrensch, D.L., 1985. Reproductive parameters. In: W.Helle and M.W.Sabelis (Editors), Spider Mites, their Biology, Natural Enemies and Control. Vol. 1A. Elsevier, Amsterdam, pp. 165–170.

    Google Scholar 

  • Wrensch, D.L. and Young, S.S.Y., 1978. Effects of density and host quality on rate of development, survivorship, and sex ratio in the carmine spider mite. Environ. Entomol., 7: 499–501.

    Google Scholar 

  • Zwick, R.W. and Fields, G.J., 1978. Field and laboratory evaluations of fenvalerate against several insect and mite pests of apple and pear in Oregon. J. Econ. Entomol., 71: 793–796.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A copy of the crop and herbivore simulation models can be obtained by sending an IBM compatible disk to L. T. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trichilo, P.J., Wilson, L.T. An ecosystem analysis of spider mite outbreaks: physiological stimulation or natural enemy suppression. Exp Appl Acarol 17, 291–314 (1993). https://doi.org/10.1007/BF02337279

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337279

Keywords

Navigation