Skip to main content
Log in

Tidal variation in bacteria, phytoplankton, zooplankton, mysids, fish and suspended particulate matter in the turbidity zone of the Elbe estuary; Interrelationships and causes

  • Feeding Strategies and Biotic Interactions
  • Published:
Netherland Journal of Aquatic Ecology Aims and scope Submit manuscript

Abstract

In June 1992, an extensive investigation programme was carried out in the turbidity zone of the Elbe river. Special attention was paid to salinity and suspended particulate matter (SPM) and their influence on bacteria, phytoplankton, zooplankton, mysids and fish. SPM was separated into three fractions of different settling velocities. Mean settling velocity (ws) was 0.05 cm s−1. The major part of SPM belonged to the slow settling fraction (ws<0.02 cm s−1).

Bacterial exoenzymatic activity showed a positive correlation with SPM and chlorophyll-a content, and also to total dissolved free amino acids.

Phytoplankton biomass reached maximum values of 5.7 μg chlorophyll-a l−1 at ebb tide. Chlorophyll-a correlated negatively with salinity, indicating riverine input of phytoplankton. A positive correlation was found between chlorophyll-a and dissolved oxygen.

Abundance of zooplankton species and their developmental stages varied over the tidal cycles; abundance of cirriped larvae and copepodite stages of the dominant speciesEurytemora affinis (Copepoda, Crustacea) was positively correlated with salinity. Individual filtering rates (IFR) ofEurytemora affinis were negatively affected by the SPM content of the water. Maximum IFR for adults was 7.2 ml h−1. Community grazing reached maximum rates of 30.3 ml l−1 h−1 (i.e. 72.7% d−1).

The dominant mysidNeomysis integer showed maximum abundance at night, possibly resulting from diel vertical migration. Abundance ofN. integer was positively correlated with SPM content.

The fish community, consisting of 17 fish species, was characterised by high densities of smelt (Osmerus eperlanus). A positive correlation was found between salinity and abundance of typical marine fish species, such as sprat (Sprattus sprattus). Similar temporal variation of abundance of smelt, sprat, andEurytemora copepodites indicates processes of habitat preference of these planktivorous fish in relation to optimal food supply.

SPM was the factor controlling both distribution of organisms and the turnover of nutrients. Salinity only was important for the distribution of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARNDT, E.A. and W. JANSEN, 1986.Neomysis integer (Leach) in the chain of Boddens South of Darss/Zingst (Western Baltic) Ecophysiology and population dynamics. Ophelia, Suppl., 4: 1–15.

    Google Scholar 

  • BEATTIE, D.M. and H. DE KRUIF, 1978. Population dynamics and biomass production ofNeomysis integer (Leach) in the Bergumermeer. Verh. Internat. Verein. Limnol., 20: 2566–2571.

    Google Scholar 

  • BEETON, A.M. and J.A. BOWERS, 1982. Vertical migration ofMysis relicta Lovén. Hydrobiologia, 93: 41–51.

    Article  Google Scholar 

  • BOAK, A.C. and R. GOULDER, 1983. Bacterioplankton in the diet of the calanoid copepodEurytemora sp. in the Humber estuary, England, U.K. Mar. Biol. 73: 139–150.

    Article  Google Scholar 

  • BREMER, P. and J. VIJVERBERG, 1982. Production, population biology and diet ofNeomysis integer (Leach) in a shallow Frisian lake (The Netherlands). Hydrobiologia, 93: 41–51.

    Article  Google Scholar 

  • BROCKMANN, U.H. and A. PFEIFFER, 1990. Seasonal changes of dissolved and particulate matter in the turbidity zone of the Elbe river. In: W. Michaelis, Ed., Estuarine water quality management. Ser. Coastal and Estuarine Studies. Springer-Verlag, Berlin, Heidelberg, New York: 327–343.

    Google Scholar 

  • CHRÓST, R.J., 1991. Preface. In: R.J. Chróst, Ed., Microbial enzymes in the aquatic environments. Brock/Springer series in contemporary bioscience

  • CHRÓST, R.J., R. WCISLO and G. HALEMEJKO, 1986. Enzymatic decomposition of organic matter by bacteria in a eutrophic lake. Arch. Hydrobiol., 107: 154–165.

    Google Scholar 

  • CYRUS, D.P. and S.J.M. BLABER, 1987. The influence of turbidity on juvenile marine fishes in estuaries. Part 2. Laboratory studies, comparision with field data and conclusions. J. Exp. Mar. Biol. Ecol., 109: 71–91.

    Google Scholar 

  • DEBUS, L., T. MEHNER and R. THIEL, 1992. Spatial and diel patterns of migration forNeomysis integer. In: J. Köhn, M.B. Jones and A. Moffat, Ed., Taxonomy, biology and ecology of (baltic) mysids. Rostock University: 79–82.

  • EISMA, D., J. BOON, R. GROENEWEGEN, V. ITTEKKOT, J. KALF and W.G. MOOK, 1983. Observations on macro-aggregates, particle size and organic composition of suspended matter in the Ems estuary. Mitt. Geol.-Paläont. Inst. Univ. Hamburg. SCOPE/UNEP Sonderband, 55: 295–314.

    Google Scholar 

  • ELLIOTT, M., M.G. O'REILLY and C.J.L. TAYLOR, 1990. The Forth estuary: a nursery and overwintering area for North Sea fishes. Hydrobiologia, 195: 89–103.

    Article  Google Scholar 

  • FAGANELI, J., 1989. Sedimentation of partiulate nitrogen and amino acids in shallow coastal waters. (Gulf of Trieste, Northern Adriatic). Mar. Chem., 26: 67–80.

    Article  CAS  Google Scholar 

  • FANGER, H.-U., H.KUHN, W.MICHAELIS, A.MÜLLER and R.RIETHMÜLLER, 1986. Investigation of material transport and load in tidal rivers. Wat. Sci. Techn., 18: Plymouth, 101.

    Google Scholar 

  • FAST, T., 1993. Zur Dynamik von Biomasse und Primärproduktion des Phytoplanktons im Elbe-Ästuar. Ph. D. Thesis, University of Hamburg.

  • FORSYTH, D.J. and M.R. JAMES, 1984. Zooplankton grazing on lake bacterioplankton and phytoplankton. J. Plankton. Res., 6: 803–811.

    Google Scholar 

  • FRANEK, D., 1988. Nahrungsuntersuchungen am juvenilen Stint (Osmerus eperlanus L., 1758) des Barther Boddens. Wiss. Z. Univ. Rostock, N-Reihe, 37: 64–68.

    Google Scholar 

  • FUHRMAN, J. 1990. Dissolved free amino acid cycling in an estuarine outflow plume. Mar. Ecol. Prog. Ser., 66: 197–203.

    CAS  Google Scholar 

  • GÄTJE, C. and L. KIES, 1990. Microphytobenthos in the Elbe-Estuary: biomass, species composition and primary production measurements with oxygen microelectrodes. In: W. Michaelis, Ed., Coastal and estuarine studies, estuarine water quality management 36. Springer-Verlag, Berlin: 399–402.

    Google Scholar 

  • GAWLER, M. and R. CHAPUIS, 1987. An improved version of the Haney grazing chamber. Freshwat. Biol., 18: 1–4.

    Google Scholar 

  • HANEY, J.F., 1971. Anin situ method for the measurement of zooplankton grazing rates. Limnol. Oceanogr., 16: 971–977.

    Google Scholar 

  • HEERKLOSS, R., 1979. Selektivität der Nahrungsaufnahme, Ingestionsrate und Faecesabgabe beiEurytemora affinis (Poppe) (Copepoda, Calanoida). Wiss. Ztschr. W.-Pieck-Univ. Rostock (Math. nat. R.) 28: 525–529.

    Google Scholar 

  • HEINLE, D.R., R.P. HARRIS, J.F. USTACH and D.A. FLEMER, 1977. Detritus as food for estuarine copepods. Mar. Biol., 40: 341–353.

    Article  Google Scholar 

  • HOBBIE, J.E., R.J. DALEY, and S. JASPER, 1977. Use of Nucleopore filters for counting bacteria by fluorescence microscopy. App. Environ. Microbiology, 33: 1225–1228.

    CAS  Google Scholar 

  • HOPPE, H.G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: Measurements by means of methylumbelliferly-substances. Mar. Ecol. Prog. Ser., 11: 299–308.

    CAS  Google Scholar 

  • HORBOWY, J., 1989. A multispecies model of fish stocks in the Baltic Sea Dana, 7: 23–43.

    Google Scholar 

  • JELONEK, M., 1986. Food of juvenile fish stages of rudd (Scardinius erythrophtalmus L.), roach (Rutilus rutilus L.), and perch (Perca fluviatilis L.) in the heated water of the Rybnik dam reservoir (Southern Poland). Acta Hydrobiol., 28: 451–461.

    Google Scholar 

  • JØRGENSEN, N.O.G., 1982. Heterotrophic assimilation and occurence of dissolved free amino acids in a shallow estuary. Mar. Ecol. Prog. Ser., 8: 145–159.

    Google Scholar 

  • KAUSCH, H., 1990. Biological processes in the estuarine environment.- In: W. Michaelis, Ed., Estuarine water quality management. Ser. Coastal and Estuarine Studies 36. Springer-Verlag, Berlin, Heidelberg, New York: 353–361

    Google Scholar 

  • LAMPERT, W. and B.E. TAYLOR, 1985. Zooplankton grazing in a eutrophic lake: Implications of diel vertical migration. Ecology, 66: 68–82.

    Google Scholar 

  • MANTOURA, R.F.C. and C.A. LLEWELLYN, 1983. The rapid determination ol algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by the reversed phase High Performance Liquid Chromatography. Anal. Chim. Acta, 151: 297–314.

    Article  CAS  Google Scholar 

  • MELACK, J.M. 1985. Interactions of detrital particulates and plankton. Hydrobiologia, 125: 209–220.

    Article  Google Scholar 

  • MICHAELIS, W., 1991. Transport von Schweb- und Spurenstoffen. 1989–1991 Report of the Sonderforschungsbereich 327 Tide-Elbe: 57–116.

  • MOPPER, K. and P. LINDROTH, 1982. Diel and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr., 27: 336–347.

    CAS  Google Scholar 

  • NAESJE, T.F., B. JONSSON, L. KLYVE and O.T. SANDLUND, 1987: Food and growth of age-0 smelts, Osmerus eperlanus, in a Norwegian fjord lake. J. Fish Biol., 30: 11–126.

    Article  Google Scholar 

  • NAGATA, T. and D.L. KIRCHMAN, 1990. Filtration-induced release of dissolved free amino acids: application to cultures of marine protozoa. Mar. Ecol. Prog. Ser., 68: 1–5.

    CAS  Google Scholar 

  • NÖTHLICH, I., 1980. Hydrobiologische Untersuchungen zur Kennzeichnung der Salzgehalts-verhältnisse im Elbe-Aestuar. Bundesanstalt fürGewässerkunde, 5. Bericht N2/350.53.

  • PEITSCH, A., 1992. Untersuchungen zur Populationsnynamik und Produktion vonEurytemora affinis im Brackwasserbereich des Elbe-Ästuars. Ph. D. Thesis, University of Hamburg, Germany.

    Google Scholar 

  • PORTER, K.G. and Y.S. FEIG, 1980. The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr., 25: 943–948.

    Google Scholar 

  • PULS, W. and H. KÜHL, 1989. Die Sinkgeschwindigkeit von Elbeschwebstoff bei Lauenburg und Bunthaus, August 1989. GKSS (Geesthacht) report 89/E/54.

  • RAYMONT, J.E.G., J. AUSTIN and E. LINFORD, 1964. Biochemical studies on marine zooplankton. I. The biochemical composition ofNeomysis integer. J. Cons. perm. int. expl. mer. 28: 354–363.

    CAS  Google Scholar 

  • RELEXANS, J.C., M. MEYBECK, G. BILLEN, M. BREUGEAILLY, H. ETCHEBER and M. SOMVILLE, 1988. Algal and microbiological processes involved by particulate organic matter dynamics in the Loire Estuary. Estuar. Coast. Shelf Sci., 27: 625–644.

    CAS  Google Scholar 

  • RICHMANN, S., D.R. HEINLE, and R. HUFF, 1977. Grazing by adult estuarine calanoid copepods of the Chesapeak Bay. Mar. Biol., 42: 69–84.

    Google Scholar 

  • RIEDEL-LORJÉ, J.C., N. MÖLLER-LINDENHOF and B. Vaessen, 1992. Salzgehalts- und Trübstoffverhältnisse in dem oberen Brackwassergebiet der Elbe. Hamburg, Wassergütestelle Elbe, 145 pp.

  • RIPPINGALE, R.J. and P.A.M. CROSSLAND, 1993. Food availability and salinity tolerance in the copepodEurytemora affinis POPPE. Arch. Hydrobiol./Suppl. 75: 357–362.

    Google Scholar 

  • RODDIE, B.D., R.J.G. LEAHEY and A.J. BERRY, 1984. Salinity-temperature tolerance andEurytemora affinis (POPPE) (Copepoda, Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the Forth estuary. J. Exp. Mar. Biol. Ecol., 79: 191–211.

    Article  Google Scholar 

  • ROMAN, M.R., 1984. Utilisation of detritus by the copepodAcartia tonsa. Limnol. Oceanogr., 29: 949–959.

    Google Scholar 

  • SCHNESE, W. and R. HEERKLOSS, 1978. Nutrition-biological studies on the zooplankton of the chain of boddens south of the Darß-Zingst peninsula: Determination of feeding and assimilation rates by means of 14C under field conditions. Kieler Meeresforsch., (Sonderheft 4): 267–274.

  • SEPULVEDA, A., R. THIEL and W. NELLEN, 1993. Distribution patterns and production of early life stages of European smelt,Osmerus eperlanus L., from the Elbe river. ICES, C.M. 1993/M:39.

  • THIEL, R., 1992. Quantitative estimation of mysids —Neomysis integer (Leach, 1814) — and their production within a typical southern Baltic Bay. In: J. Köhn, M.B. Jones and A. Moffat, Ed., Taxonomy, biology and ecology of (baltic) mysids. Rostock University: 73–78.

  • UTERMÖHL, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Int. Ver. theor. angew. Limnol., 9: 1–39.

    Google Scholar 

  • VAN DENSEN, W.L.T., 1985 Feeding behaviour of major 0+ fish species in a shallow, eutrophic lake (Tjeukemeer, The Netherlands). Z. angew. Ichthyol., 2: 49–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernát, N., Köpcke, B., Yasseri, S. et al. Tidal variation in bacteria, phytoplankton, zooplankton, mysids, fish and suspended particulate matter in the turbidity zone of the Elbe estuary; Interrelationships and causes. Netherlands Journal of Aquatic Ecology 28, 467–476 (1994). https://doi.org/10.1007/BF02334218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02334218

Keywords

Navigation