Skip to main content
Log in

3D-numerical modelling of cohesive suspended sediment in the Western Scheldt estuary (The Netherlands)

  • Modelling
  • Published:
Netherland Journal of Aquatic Ecology Aims and scope Submit manuscript

Abstract

A cohesive sediment transport model considering the effects of flocculation, deposition and erosion is used in an attempt to simulate the suspended sediment distribution in a mesotidal estuary. The numerical model solves the three-dimensional (3D) advection-diffusion equation using a two-time level scheme, and a semi-implicit finite difference approach. The transport model is coupled to a 3D-barotropic hydrodynamic model for the simulation of the major tidal components reproducing the non-linear effects. An application of these models in the Western Scheldt estuary is described. The results of the different tests show that the adopted approach provides a useful basis for a good understanding of the physical processes involved in sediment transport and for the study of practical problems. The sensitivity of the model to key parameters controlling the simulation of bed sediment/water exchanges, shows the importance of a good definition of bottom sediment characteristics and the importance of further development of a consolidation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARIATHURAI, R. and R.B. KRONE, 1976. Finite element model for cohesive sediment transport. J. Hydr. Div., ASCE, Vol. 102, No. HY3, p. 323–338.

    Google Scholar 

  • AVOINE, J., 1986. Sediment exchanges between the Seine estuary and its adjacent shelf. J. Geol. Society, 144: 135–148.

    Google Scholar 

  • BECKERS, J.M., 1991. Application of the GHER 3D general circulation model to the western Mediterranean. J. Marine Systems, Elsevier Science Publ. B.V., Amsterdam, 1: 315–332.

    Google Scholar 

  • CANCINO, L. and R. NEVES, 1994. Numerical modelling of three-dimensional cohesive sediment transport in an estuarine environment. Proceedings of EUROMECH 310, Le Havre, France, 1993, World Scientific Publishing, 15 pp. (in press).

  • CLOERN, J.E., 1987. Turbidity as a control on phytoplankton biomass and productivity in estuaries In: R.J. Uncles, Ed., Dynamics of Turbid Coastal Environments. EBSA. 16th annual symposium. Cont. Shelf Res., 7: 1367–1381.

    Article  Google Scholar 

  • DELO, E.A., 1988. Estuarine muds manual. Report No. SR 164, Hydraulics Research, Wallingford, UK, 64 pp.

    Google Scholar 

  • DYER, K.R., 1986. Coastal and estuarine sediment dynamics. Wiley-Interscience, New York, 342 pp.

    Google Scholar 

  • DYER, K.R. and E.M. EVANS, 1989. Dynamics of turbidity maximum in a homogeneous tidal channel. J. Coastal Research, Special Issue No. 5, Fort Lauderdale, Florida, p. 23–30.

    Google Scholar 

  • EINSTEIN, H. A., 1950. The bedload function for sediment transportation in open channel flows. Soil Cons. Serv. U. S. Dept. Agric. Tech. Bull., No. 1026, 78 pp.

  • FISHER, T.R., L.W. HARDING Jr., D.W. STANLEY and L.G. WARD. 1988 Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuar. Coast. Shelf Sci. 27: 61–93.

    CAS  Google Scholar 

  • GIBBS, R.J., D.M. TSHUDY, L. KONWAR and J.M. MARTIN, 1989. Coagulation and transport of sediments in the Gironde estuary. Sedimentology, 36: 987–999.

    Google Scholar 

  • HAYTER, E.J. and A.J. MEHTA, 1986. Modelling cohesive sediment transport in estuarine waters. Appl. Math. Modelling, 10: 294–303.

    Article  Google Scholar 

  • KIRBY, R. and W.R. PARKER, 1977. Ecological impact of cohesive sediment suspensions. In: 14th IAHR Conference, Ecological Aspects of Dredging, Baden-Baden, p. 854–857.

  • KRONE, R.B., 1962. Flume studies of the transport in estuarine shoaling processes. Hydr. Eng. Lab., Univ. of Berkeley, California, USA. 110 pp.

    Google Scholar 

  • LARDNER, R.W. and Y. SONG, 1991. An algoritm for three-dimensional convection and diffusion with very different horizontal and vertical length scales. Int. J. Num. Meth. Eng., 32: 1303–1319.

    Article  Google Scholar 

  • LOOFF, D., 1978. Kaartering van de bodemsamenstelling van het oostelijk gedeelte van de Westerschelde. Methode en Resultaten. Rijkswaterstaat, Rep. WWKZ nr. 78.V013, 10 pp.

  • LOOFF, D., 1980. Kaartering van de bodemsamenstelling van het westelijk gedeelte van de Westerschelde. Methode en Resultaten. Rijkswaterstaat, Rep. WWKZ nr. 80.V009, 9 pp.

  • McLAREN, P. and D.I. LITTLE, 1987. The effects of sediment transport on contaminant dispersal: an example from Milford Haven. Mar. Pollut. Bull. 18: 586–594.

    CAS  Google Scholar 

  • MEHTA, A.J., E.J. HAYTER, W.R. PARKER, R.B. KRONE and A.M. TEETER, 1986a. A cohesive sediment transport. I: Process description. J. Hydraul. Eng., 115: 1076–1093.

    Google Scholar 

  • MEHTA, A.J., W.N. McANALLY, E.J. HAYTER, A.M. TEETER, D. SCHOELLHAMER, S.B. HELTZEL and W.P. CAREY, 1986b. A cohesive sediment transport. II: application. J. Hydraul. Eng., 115: 1094–1112.

    Google Scholar 

  • MULDER, H.P.J. and C. UDINK, 1991. Modelling of cohesive sediment transport. A case study: The Western Scheldt Estuary. In: B.L. Edge, Ed., Proceed. 22nd Internat. Conf. Coast. Engin. Amer. Soc. Civ. Eng., New York, p. 3012–3023.

  • NICHOLSON, J.M.C., 1983. Three-dimensional models of particulate and cohesive suspended sediment transport. Ph.D. Thesis, Univ. of Manchester, England, p. 321.

    Google Scholar 

  • NIHOUL, J.C.J., 1984. A three-dimensional general marine circulation model in a remote sensing perspective. Ann. Geophys., 2: 433–442.

    Google Scholar 

  • O'CONNOR, B.A. and J.A. NICHOLSON, 1988. Three-dimensional model of suspended particulate sediment transport. Coastal Eng. 12: 157–174.

    Google Scholar 

  • ODD, N.V.M. and M.W. OWEN, 1972. A two-layer model of mud transport in the Thames estuary. Proceedings, Institution of Civil Engineers, London, p. 195–202.

  • ODD, N.V.M., 1982. The feasibility of using mathematical models to predict sediment transport in the Severn estuary. The Severn Barrage, Thomas Telford Ltd, London, p. 195–202.

    Google Scholar 

  • PARTHENIADES, E., 1965. Erosion and deposition of cohesive soils. J. Hydr. Div., ASCE, 91, No. HY1: 105–139.

    Google Scholar 

  • PHILLIPS, N.A., 1957. A coordinate system having some spacial advantages for numerical forecasting. J. Meteorol., 14: 184–186.

    Google Scholar 

  • PLUMMER, D.H., N.J.P. OWENS and R.A. HERBERT. 1987. Bacteria-particle interactions in turbid estuarine environments. In: R.J. Uncles, Ed., Dynamics of Turbid Coastal Environments (EBSA 16th annual symposium). Cont. Shelf Res. 7: 1492–1433.

  • ROBERT, J.L. and Y. OUELLET, 1987. A three-dimensional finite element model for the study of steady and non-steady natural flows. In: J.C.J. Nihoul and B.M. Jamart, Eds. Elsevier Oceanography Series, 45: 359–372.

  • RUCH, P., MIRMAND, M., JOUANNEAU, J.-M. and LATOUCHE, C., 1993. Sediment budget and transfer of suspended sediment from the Gironde estuary to Cap-Ferret Canyon. Mar. Geology, 111: 109–119.

    Google Scholar 

  • SANTOS, A.J. and R. NEVES, 1991. Radiactive artificial boundaries in ocean barotropic models. In: A. S. Arcilla, Ed., Proceed. 2nd Int. Conf. on Computer Modelling in Ocean Engineering, Barcelona, p. 373–383.

  • SHENG, Y.P., 1986. Modelling bottom boundary layer and cohesive sediment dynamics in estuarine and coastal waters. In: A. J. Mehta, Ed., Estuarine cohesive sediment dynamics, Springer, Berlin, 14: 360–400.

    Google Scholar 

  • SIMENSTAD, C.A., L.F. SMALL and C.D. McINTIRE, 1990. Consumption processes and food web structure in the Columbia river estuary. Prog. Oceanogr. 25: 271–297.

    Google Scholar 

  • STEPHENS, J.A., R.J. UNCLES, M.L. BARTON and F. FITZPATRICK., 1992. Bulk properties of intertidal sediments in a muddy macrotidal estuary. Mar. Geol. 103: 15 pp.

  • STOLZENBACH, K.D., K.A. NEWMAN and C.S. WONG, 1992. Aggregation of fine particles at the sediment water interface. J. Geoph. Res., 97: 17,889–17,898.

    Google Scholar 

  • THOMAS, L.H., 1994. Elliptic problems in linear difference equations over a network. Watson Sci. Comput. Lab. Rept., Columbia University, New York: 373–383.

    Google Scholar 

  • VAN MALDEGEM, D.C., H.P.J. MULDER and A. LANGERAK, 1993. A cohesive sediment balance for the Scheldt Estuary. In: Proceed. ECSA-21 Symposium, Marine and Estuarine Gradients, Gent, Belgium, 1991. Neth. J. Aquat. Ecol., 27: 247–256.

    Google Scholar 

  • VALE, C., 1990. Temporal variations of the particulate metals in the Tagus river estuary. The Sci. Total Environ., 97/98: 137–154.

    Google Scholar 

  • VAN RIJN, L.C., 1989. State of the art in sediment transport modeling. In: Sam S. Y. Wang, Ed., Sediment Transport Modeling, ASCE, p. 13–32.

  • VINCX, M., G. DE SMET and A. VIERSTRAETE, 1993. Sediment grain size distribution in the Elbe, Schelde and Gironde around the maximum turbidity zone. EC-MATURE Report, Univ. of Gent, Belgium, 5 pp.

    Google Scholar 

  • WELLERSHAUS, S. and A. SOLTANPOUR-GARGARI, 1991. Planktonic copepods in very low salinity mixing zone. Proceed 4th Internat. Conf. Copepoda. Bull. Plankton Soc. Japan, Spec. Vol.: 133–142.

  • WOLLAST, R., 1986. The Scheldt Estuary. In: W. Salomons, B.L. Bayne, E.K. Duursma and U. Förstner, Eds., Pollution of the North Sea. An Assessment. Springer-Verlag, p. 183–193.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cancino, L., Neves, R. 3D-numerical modelling of cohesive suspended sediment in the Western Scheldt estuary (The Netherlands). Netherlands Journal of Aquatic Ecology 28, 337–345 (1994). https://doi.org/10.1007/BF02334202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02334202

Keywords

Navigation