Skip to main content
Log in

Spectrotemporal analysis of guided-wave pulse-echo signals: Part 1. Dispersive systems

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a wavelet-based time frequency analysis is presented to analyze guided-wave signals for rapid inspection of thin-walled structural members. The overall objective is to detect and locate discontinuities using a single broadband signal. Part 1 of this paper shows how the wavelet transform can be used to analyze a dispersive system. A straightforward procedure is developed to extract group delay information from the computed wavelet transform coefficients. The procedure is demonstrated by a simulation study for single-mode and simple dual-mode dispersion signals. Part 2 is an experimental study of multimode dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rokhlin, S.I., Mayhan, R.J., andAdler, L., “On-line Ultrasonic Lamb Wave Monitoring of Spot Welds,”Mat. Eval.,43,879–883 (1985).

    Google Scholar 

  2. Datta, S.K., Shah, A.H., andKarunasena, W., “Wave Propagation in Composite Media and Material Characterization,”Elastic Waves and Ultrasonic Nondestructive Evaluation, ed. S. K. Datta, J. D. Achenbach andY. S. Rajapakse, Elsevier Science, New York, 159–169 (1990).

    Google Scholar 

  3. Woodward, C. andWhite, K.R., “Long Range Bridge Girder Evaluation Using Lamb Waves,”Review of Progress in Quantitative NDE,15,ed. D. O. Thompson andD. E. Chimenti,Plenum Press,New York,1847–1852 (1996).

    Google Scholar 

  4. Park, M.H., Kim, I.S., andYoon, Y.K., “Ultrasonic Inspection of Long Steel Pipes Using Lamb Waves,”NDT&E Int.,29 (1),13–20 (1996).

    Google Scholar 

  5. Rose, J.L., Jiao, D., andSpencer, J., Jr., “Ultrasonic Guided Wave NDE for Piping,”Mat. Eval.,54,1310–1313 (1996).

    Google Scholar 

  6. Rajana, K.M., Hongerholt, D., Ditri, J.J., andRose, J.L., “Analysis of the Wedge Method of Generating Guided Waves: An Experimental Approach,”Review of Progress in Quantitative NDE,14,ed. D. O. Thompson andD. E. Chimenti,Plenum Press,New York,171–180 (1995).

    Google Scholar 

  7. Mal, A.K., Xu, P.C., andBar-Cohen, Y., “Leaky Lamb Waves for the Ultrasonic Nondestructive Evaluation of Adhesive Bonds,”Trans. ASME J. Eng. Mat. Tech.,112,255–259 (1990).

    Google Scholar 

  8. Chimenti, D.E. andMartin, R.W., “Nondestructive Evaluation of Composite Laminates by Leaky Lamb Waves,”Ultrasonics,29 (1),13–21 (1991).

    Google Scholar 

  9. Bar-Cohen, Y., Mal, A.K., andChang, Z., “Composite Material Defect Characterization Using Leaky Lamb Wave Dispersion Data,”Proceedings of the SPIE—The International Society for Optical Engineering,3396,180–186 (1998).

    Google Scholar 

  10. Safaeinili, A., Lobkis, O.I., andChimenti, D.E., “Quantitative Materials Characterization Using Air-coupled Leaky Lamb Waves,”Ultrasonics,34 (2–5),393–396 (1996).

    Google Scholar 

  11. Castaings, M. andCawley, P., “The Generation, Propagation, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducers,”J. Acoust. Soc. Am.,100,3070–3077 (1996).

    Google Scholar 

  12. Thompson, R.B., “A Model for Electromagnetic Generation of Ultrasonic Guided Waves in Ferromagnetic Metal Polycrystals,”IEEE Trans. Sonics Ultrasonics,SU-20, (4),7–15 (1973).

    Google Scholar 

  13. Kwun, H. andBartels, K.A., “Experimental Observation of Elastic-wave Dispersion in Bounded Solids of Various Configurations,”J. Acoust. Soc. Am.,99,962–968 (1996).

    Google Scholar 

  14. Pierce, S.G., Culshaw, B., Philip, W.R., Lecuyer, F., andFarlow, R., “Broadband Lamb Wave Measurements in Aluminum and Carbon Glass Fibre Reinforced Composite Materials Using Non-contacting Laser Generation and Detection,”Ultrasonics,35,105–114 (1997).

    Google Scholar 

  15. Viktorov, I.A., Rayleigh and Lamb Waves: Physical Theory and Applications, Plenum Press, New York (1967).

    Google Scholar 

  16. Graff, K.F., Wave Motion in Elastic Solids, Dover, New York (1975).

    Google Scholar 

  17. Rose, J.L., Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK (1999).

    Google Scholar 

  18. Rose, J.L., Pelts, S.P., andQuarry, M.J., “A Comb Transducer Model for Guided Wave NDE,”Ultrasonics,36 (1–5),163–169 (1998).

    Google Scholar 

  19. Monkhouse, R.S.C., Wilcox, P.D., andCawley, P., “Flexible Interdigital PVDF Transducers for the Generation of Lamb Waves in Structures,”Ultrasonics,35,489–498 (1997).

    Google Scholar 

  20. Wooh, S.C. andShi, Y., “Synthetic Phase Tuning of Guided Waves,”IEEE Trans. Ultrasonics Ferroelect. Freq. Control,48,209–223 (2001).

    Google Scholar 

  21. Alleyne, D. andCawley, P., “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,”J. Acoust. Soc. Am.,89,1159–1168 (1991).

    Google Scholar 

  22. Prosser, W.H., Seale, M.D., andSmith, B.T., “Time-frequency Analysis of the Dispersion of Lamb Modes,”J. Acoust. Soc. Am.,105,2669–2676 (1999).

    Google Scholar 

  23. Inoue, H., Kishimoto, K., andShibuya, T., “Experimental Wavelet Analysis of Flexural Waves in Beams,” EXPERIMENTAL MECHANICS,36,212–217 (1996).

    Google Scholar 

  24. Abbate, A., Frankel, J., and Das, P., “Wavelet Transform Signal Processing for Dispersion Analysis of Ultrasonic Signals,” Proceedings of the IEEE Ultrasonics Symposium, New York, 751–755 (1995).

  25. Veroy, K.P. andWooh, S.C., “Analysis of Dispersive Waves Using the Wavelet Transform,”Review of Progress in Quantitative Nondestructive Evaluation, ed. D. O. Thompson andD. E. Chimenti, Plenum Press, New York, 687–694 (1999).

    Google Scholar 

  26. Wooh, S.C. andVeroy, K., “Time-frequency Analysis of Broadband Dispersive Waves Using the Wavelet Transform,”Review of Progress in Quantitative NDE,509-A,ed. D. O. Thompson andD. E. Chimenti,American Institute of Physics,Melville, NY,831–838 (2000).

    Google Scholar 

  27. Oppenheim, A.V. andSchafer, R.W., Discrete-time Signal Processing, Prentice Hall, Englewood Cliffs, NJ (1989).

    Google Scholar 

  28. Chui, C.K., An Introduction of Wavelets, Academic Press, San Diego, CA (1992).

    Google Scholar 

  29. Teolis, A., Computational Signal Processing with Wavelets, Birkhäuser, Boston (1998).

    Google Scholar 

  30. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C. andLiu, H.H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,”Proc. Roy. Soc. Lon. A,454,903–995 (1998).

    Google Scholar 

  31. Wooh, S.-C. andVeroy, K., “Spectrotemporal Analysis of Guided-wave Pulse-echo Signals: Part 2. Numerical and Experimental Investigations,” EXPERIMENTAL MECHANICS,41,332–342 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooh, S.C., Veroy, K. Spectrotemporal analysis of guided-wave pulse-echo signals: Part 1. Dispersive systems. Experimental Mechanics 41, 324–331 (2001). https://doi.org/10.1007/BF02323926

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323926

Key Words

Navigation