Skip to main content
Log in

Interlaminar fracture toughness of graphite/epoxy composite under mixed-mode deformations

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

An antisymmetric test fixture is employed to investigate interlaminar fracture behavior in graphite/epoxy composite material under mixed-mode deformations. Finite correction factors for the graphite/epoxy fracture specimen with various crack lengths are used to determine the interlaminar fracture toughness by finite-element stress analysis. Interlaminar fracture characteristics of graphite/epoxy composite material under mode-I, mode-II and mixed-mode deformations are evaluated experimentally. A mixed-mode fracture criterion is also investigated to obtain information on mixedmode interlaminar fracture behavior of graphite/epoxy composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitney, J.M., Browning, C.E. andHoogsteden, W., “A Double Cantilever Beam Test for Characterizing Mode I Delamination of Composite Materials,”J. Reinforced Composites,1,297–330 (1982).

    Google Scholar 

  2. Wilkins, D.J., Eisenmann, J.R., Camin, R.A., Margolis, W.S. and Benson, R.A., “Characterizing Delamination Growth in Graphite-Epoxy,” Damage in Composite Materials, ASTM STP 775, 168–183 (1982).

  3. Devitt, D.F., Schapery, R.A. andBradley, W.L., “A Method for Determining the Mode I Delamination Fracture Toughness of Elastic and Viscoelastic Composite Materials,”J. Comp. Mat.,14,270–285 (1980).

    Google Scholar 

  4. Russell, A.J. and Street, K.N., “Factors Affecting the Interlaminar Fracture Energy of Graphite/Epoxy Laminates,” Progress in Science and Engineering of Composite (ICCM-IV), 279–286 (1982).

  5. Murri, G.B. and O'Brien, T.K., “Interlaminar G IIC Evaluation of Toughened-Resin Matrix Composites using the End-Notched Flexure Test,” 26th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conf. (1985).

  6. Carlsson, L.A., Gillespie, J.W. Jr. andPipes, R.B., “On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing,”J. Comp. Mat.,20,594–604 (1986).

    Google Scholar 

  7. Donaldson, S.L., “Fracture Toughness Testing of Graphite/Epoxy and Graphite/PEEK Composites,”Composites,16,103–112 (1985).

    Google Scholar 

  8. Wang, A.S.D., Kishore, N.N. and Feng, W.W., “On Mixed Mode Fracture in Off-axis Unidirectional Graphite-Epoxy Composites,” Progress in Science and Engineering of Composite (ICCM-IV), 599–606 (1982).

  9. Banks-Sills, L., Arcan, M. andBortman, Y., “A Mixed Mode Fracture Specimen for Mode II Dominant Deformation,”Eng. Fract. Mech.,20,145–157 (1984).

    Google Scholar 

  10. Ramkumar, R.L. and Witcomb, J.D., “Characterization of Mode I and Mixed-Mode Delamination Growth in T300/5208 Graphite/Epoxy,” Delamination and Debonding of Materials, ASTM STP 876, 315–335 (1985).

  11. Russell, A.J. and Street, K.N., “Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy,” Delamination and Debonding of Materials, ASTM STP 876, 349–370 (1985).

  12. Banks-Sills, L., Arcan, M. andBui, H.D., “Toward a Pure Shear Specimen for K IIC Determination,”Int. J. Fract.,22,R9-R14 (1983).

    Google Scholar 

  13. Arcan, M., Hashin, Z. andVoloshin, A., “A Method to Produce Plane-Stress States with Applications to Fiber-Reinforced Materials,”Experimental Mechanics,18,141–146 (1978).

    Google Scholar 

  14. Jurf, R.A. andPipes, R.B., “Interlaminar Fracture of Composite Materials,”J. Comp. Mat.,16,386–394 (1982).

    Google Scholar 

  15. Hong, C.S. and Yoon, S.H., “Interlaminar Fracture Toughness of Graphite/Epoxy Composite under Mixed Mode Deformations,” Proc. VI Int. Cong. on Exp. Mech., Oregon (1988).

  16. Arcan, L., Arcan, M. and Daniel, I.M., “SEM Fractography of Pure and Mixed-Mode Interlaminar Fractures in Graphite/Epoxy Composites,” Fractography of Modern Engineering Materials: Composites and Metals, ASTM STP 948, 41–67 (1987).

  17. Sih, G.C. and Liebowitz, H., “Mathematical Theories of Brittle Fracture,” Fracture — an Advanced Treatise,II,Academic Press (1968).

  18. Chan, S.K., Tuba, I.S. andWilson, W.K., “On the Finite Element Method in Linear Fracture Mechanics,”Eng. Fract. Mech.,2,1–17 (1970).

    Google Scholar 

  19. Hahn, H.T., “A Mixed-Mode Fracture Criterion for Composite Materials,”Comp. Tech. and Rev.,5,26–29 (1983).

    Google Scholar 

  20. Spencer, B. andBarnby, J.T., “The Effects of Notch and Fiber Angles on Crack Propagation in Fiber Reinforced Polymers,”J. Mat. Sci.,11,83–88 (1976).

    Google Scholar 

  21. Wu, E.M., “Application of Fracture Mechanics to Anisotropic Plates,”J. Appl. Mech.,34,967–974 (1967).

    Google Scholar 

  22. McKinney, J.M., “Mixed-Mode Fracture of Unidirectional Graphite/Epoxy Composites,”J. Comp. Mat.,6,164–166 (1972).

    Google Scholar 

  23. Banks-Sills, L., Arcan, M. andGabay, H., “A Mode II Fracture Specimen—Finite Element Analysis,”Eng. Fract. Mech.,19,739–750 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S.H., Hong, C.S. Interlaminar fracture toughness of graphite/epoxy composite under mixed-mode deformations. Experimental Mechanics 30, 234–239 (1990). https://doi.org/10.1007/BF02322816

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02322816

Keywords

Navigation