Skip to main content
Log in

Discrete variational Green's function

II. One dimensional problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc.68, 337–404 (1950).

    MATH  MathSciNet  Google Scholar 

  2. ——, Smith, K. T.: Characterization of positive reproducing kernels. Application to Green's functions. Amer. J. Math.27, 611–622 (1957)

    MathSciNet  Google Scholar 

  3. Brauer, F.: Singular self-adjoint boundary value problems for the differential equationLx=λMx. Trans. Amer. Math. Soc.88, 331–345 (1958).

    MATH  MathSciNet  Google Scholar 

  4. Ciarlet, P. G.: AnO(h 2) method for a non-smooth boundary value problem. Aequationes Mathematicae2, 39–49 (1968).

    MATH  MathSciNet  Google Scholar 

  5. — Discrete variational Green's function. I. Aequationes Mathematicae (to appear).

  6. ——, Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967)

    Article  MathSciNet  Google Scholar 

  7. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. 1. New York: Interscience 1953

    Google Scholar 

  8. ——: Methods of mathematical physics, vol. 2. New York: Interscience 1962.

    Google Scholar 

  9. Davis, P. J.: Interpolation and approximation. New York: Blaisdell Publishing Co. 1963

    Google Scholar 

  10. Golomb, M., Jerome, J. W.: Ordinary differential equations with boundary conditions on arbitrary point sets. Trans. Amer. Math. Soc. (to appear).

  11. Hedstrom, G. W., Varga, R. S.: Applications of Besov spaces to spline approximation. J. Approx. Theory- (to appear).

  12. Hulme, B. L.: Interpolation by Ritz approximation. J. Math. Mech.18, 337–342 (1968).

    MATH  MathSciNet  Google Scholar 

  13. Kamke, E. A.: Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen. II, III. Math. Z.46, 231–286 (1940).

    MATH  MathSciNet  Google Scholar 

  14. Lucas, T. R.: A theory for generalized splines with applications to boundary values problems. Numer. Math. (to appear).

  15. Mikhlin, S. G.: Variational methods in mathematical physics. New York: The Macmillan Co. 1964.

    Google Scholar 

  16. Perrin, G., Price, H. S., Varga, R. S.: On higher-order numerical methods for nonlinear two-point boundary value problems. Numer. Math.13, 180–198 (1969).

    Article  MathSciNet  Google Scholar 

  17. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  18. Rose, M. E.: Finite difference schemes for differential equations. Math. Comp. 18, 179–195 (1964).

    MATH  MathSciNet  Google Scholar 

  19. Schultz, M. H., Varga, R. S.:L-splines. Numer. Math.10, 345–369 (1967).

    Article  MathSciNet  Google Scholar 

  20. Varga, R. S.: Hermite interpolation-type Ritz methods for two-point boundary value problems. Numerical solution of partial differential equations (J. H. Bramble, ed.), pp. 365–373. New York: Academic Press 1966.

    Google Scholar 

  21. Yosida, K. Y.: Functional analysis. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G., Varga, R.S. Discrete variational Green's function. Numer. Math. 16, 115–128 (1970). https://doi.org/10.1007/BF02308864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02308864

Keywords

Navigation