Skip to main content
Log in

A simulated annealing methodology for clusterwise linear regression

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In many regression applications, users are often faced with difficulties due to nonlinear relationships, heterogeneous subjects, or time series which are best represented by splines. In such applications, two or more regression functions are often necessary to best summarize the underlying structure of the data. Unfortunately, in most cases, it is not known a priori which subset of observations should be approximated with which specific regression function. This paper presents a methodology which simultaneously clusters observations into a preset number of groups and estimates the corresponding regression functions' coefficients, all to optimize a common objective function. We describe the problem and discuss related procedures. A new simulated annealing-based methodology is described as well as program options to accommodate overlapping or nonoverlapping clustering, replications per subject, univariate or multivariate dependent variables, and constraints imposed on cluster membership. Extensive Monte Carlo analyses are reported which investigate the overall performance of the methodology. A consumer psychology application is provided concerning a conjoint analysis investigation of consumer satisfaction determinants. Finally, other applications and extensions of the methodology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, E., & Korst, J. (1989).Simulated annealing and Boltzmann machines. New York: Wiley.

    Google Scholar 

  • Addelman, S. (1962). Orthogonal main effects plans for asymmetrical factorial experiments.Technometrics, 4, 21–46.

    Google Scholar 

  • Bohachevsky, I. O., Johnson, M. E., & Stein, M. L. (1986). Generalized simulated annealing for function optimization.Technometrics, 28, 209–217.

    Google Scholar 

  • Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (Vol. I, pp. 105–155). New York: Seminar Press.

    Google Scholar 

  • Davis, L. (1987).Genetic algorithms and simulated annealing. London: Pitman.

    Google Scholar 

  • DeSarbo, W. S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis.Psychometrika, 47, 446–469.

    Google Scholar 

  • DeSarbo, W. S., & Carroll, J. D. (1985). Three-way metric unfolding via weighted least squares.Psychometrika, 50, 275–300.

    Article  Google Scholar 

  • DeSarbo, W. S., Carroll, J. D., Clark, L. A., & Green, P. E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables.Psychometrika, 49, 57–78.

    Google Scholar 

  • DeSarbo, W. S., & Cron, W. L. (1988). A maximum likelihood methodology for clusterwise linear regression.Journal of Classification, 5, 249–282.

    Article  Google Scholar 

  • DeSarbo, W. S., Mahajan, V. (1984). constrained classification: The use of a priori information in cluster analysis.Psychometrika, 49, 187–215.

    Google Scholar 

  • DeSarbo, W. S., Oliver, R. L., & De Soete, G. (1986). A probabilistic multidimensional scaling vector model.Applied Psychological Measurement, 10, 79–98.

    Google Scholar 

  • De Soete, G., DeSarbo, W. S., & Carroll, J. D. (1985). Optimal variable weighting for hierarchical clustering: An alternating least squares algorithm.Journal of Classification, 2/3, 173–192.

    Google Scholar 

  • De Soete, G., DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984). The presentation of nonsymmetric rectangular proximity data by ultrametric and path length tree structures.Psychometrika, 49, 289–310.

    Google Scholar 

  • De Soete, G., Hubert, L., & Arabie, P. (1988a). On the use of simulated annealing for combinatorial data analysis. In W. Gaul & M. Schader (Eds.),Data, expert knowledge, and decisions (pp. 328–340). Berlin: Springer Verlag.

    Google Scholar 

  • De Soete, G., Hubert, L., & Arabie, P. (1988b). The comparative performance of simulated annealing on two problems of combinatorial data analysis. In E. Diday (Ed.),Data analysis and informatics, V (pp. 489–496). Amsterdam: North-Holland.

    Google Scholar 

  • Dubes, R. C., & Klein, R. (1987, June).Simulated annealing in data analysis. Handout at a talk given at the 1987 Annual Meeting of the Psychometric Society, Montreal, Canada.

  • Gabor, A., & Granger, D. W. (1966). On the price consciousness of consumers.Applied Statistics, 10, 170–181.

    Google Scholar 

  • Gidas, B. (1985). Nonstationary Markov chains and convergence of the annealing algorithm.Journal of Statistical Physics, 39, 73–131.

    Article  Google Scholar 

  • Goldberg, D. E. (1989).Genetic algorithms in search, optimization, and macine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data.Journal of Marketing Research, 8, 355–363.

    Google Scholar 

  • Green, P. E., & Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook.Journal of Consumer Research, 5, 103–123.

    Google Scholar 

  • Haggerty, M. R. (1985). Improving the predictive power of conjoint analysis: The use of factor analysis and cluster analysis.Journal of Marketing Research, 22, 168–184.

    Google Scholar 

  • Henderson, J. M., & Quandt, R. E. (1982).Microeconomic theory: A mathematical approach (3rd ed.). New York: McGraw Hill.

    Google Scholar 

  • Johnson, M. E. (1988).Simulated annealing and optimization. Syracuse: American Science Press.

    Google Scholar 

  • Judge, G. G., Griffiths, W. E., Hill, R. C., Lükepohl, H., & Lee, T. (1985).The theory and practice of econometrics. New York: Wiley.

    Google Scholar 

  • Kamakura, A. W. (1988). A least-squares procedure for benefit segmentation with conjoint experiments.Journal of Marketing Research, 25, 157–167.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vechhi, M. P. (1983). Optimization by simulated annealing.Science, 220, 671–680.

    Google Scholar 

  • Levy, A. V., & Montalvo, A. (1985). The tunneling algorithm for the global minimization of functions.SIAM Journal of Scientific and Statistical Computing, 6, 15–29.

    Google Scholar 

  • Lin, S., & Kernigham, B. (1973). An effective heuristic algorithm for the traveling salesman problem.Operations Research, 21, 498–516.

    Google Scholar 

  • Locke, E. A. (1967). Relationship of goal level to performance level.Psychological Reports, 20, 1068.

    Google Scholar 

  • Locke, E. A. (1982). Relation of goal level to performance with a short work period and multiple goal levels.Journal of Applied Psychology, 67, 512–514.

    Google Scholar 

  • Locke, E. A., Shaw, K. N., Saari, L. M., & Latham, G. P. (1981). Goal setting and task performance: 1969–1980.Psychological Bulletin, 90, 125–152.

    Google Scholar 

  • Lundy, M. (1986). Applications of the annealing algorithm to combinatorial problems in statistics.Biometrika, 72, 191–198.

    Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.5th Berkeley Symposium on Mathematics, Statistics and Probability, 1, 281–298.

    Google Scholar 

  • Maddala, G. S. (1976).Econometrics. New York: McGraw-Hill.

    Google Scholar 

  • Meier, J. (1987). A fast algorithm for clusterwise linear absolute deviations regression.OR Spektrum, 9, 187–189.

    Article  Google Scholar 

  • Mitra, D., Romeo, F., & Sangiovanni-Vincentelli, A. (in press). Convergence and finite-time behavior of simulated annealing.Advances in Applied Probability.

  • Ogawa, K. (1987). An approach to simultaneous estimation and segmentation in conjoint analysis.Marketing Science, 6, 66–81.

    Google Scholar 

  • Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions.Journal of Marketing Research, 17, 460–469.

    Google Scholar 

  • Oliver, R. L., & DeSarbo, W. S. (1988). Response determinants in satisfaction judgments.Journal of Consumer Research, 14, 495–507.

    Article  Google Scholar 

  • Oliver, R. L., & Swan, J. E. (in press). Consumer perceptions of interpersonal equity and satisfaction in transactions: A field survey approach.Journal of Marketing.

  • Quandt, R. E. (1972). A new approach to estimating switching regressions.Journal of the American Statistical Association, 67, 306–310.

    Google Scholar 

  • Sowter, A. P., Gabor, A., & Granger, G. W. (1971). The effect of price on choice.Applied Economics, 3, 167–181.

    Google Scholar 

  • Späth, H. (1979). Algorithm 39: Clusterwise linear regression.Computing, 22, 367–373.

    Article  Google Scholar 

  • Späth, H. (1981). Correction to Algorithm 39: Clusterwise linear regression.Computing, 26, 275.

    Article  Google Scholar 

  • Späth, H. (1982). Algorithm 48: A fast algorithm for clusterwise linear regression.Computing, 29, 175–181.

    Article  Google Scholar 

  • Späth, H. (1985).Cluster dissection and analysis. New York: Wiley.

    Google Scholar 

  • Späth, H. (1986a). Clusterwise linear least absolute deviations regression.Computing, 37, 371–378.

    Article  Google Scholar 

  • Späth, H. (1986b). Clusterwise linear least squares versus least absolute deviations regression: A numerical comparison for a case study. In W. Gaul & M. Schader (Eds.),Classification as a tool of research (pp. 413–422), New York: North Holland.

    Google Scholar 

  • Späth, H. (1987). Mathematische software zur linearen regression [Mathematical software for linear regression]. Munich: R. Oldenbourg.

    Google Scholar 

  • van Laarhoven, P. J. M., & Aarts, E. H. L. (1987).Simulated annealing: Theory and applications. Boston: D. Reidel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to thank the editor, associate editor, and three anonymous reviewers for their insightful comments and thorough review of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSarbo, W.S., Oliver, R.L. & Rangaswamy, A. A simulated annealing methodology for clusterwise linear regression. Psychometrika 54, 707–736 (1989). https://doi.org/10.1007/BF02296405

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02296405

Key words

Navigation