Skip to main content
Log in

The role of collateral information about examinees in item parameter estimation

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Standard procedures for estimating item parameters in item response theory (IRT) ignore collateral information that may be available about examinees, such as their standing on demographic and educational variables. This paper describes circumstances under which collateral information about examineesmay be used to make inferences about item parameters more precise, and circumstances under which itmust be used to obtain correct inferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, E. B. (1973).Conditional inference and models for measuring. Copenhagen: Danish Institute for Mental Health.

    Google Scholar 

  • Andersen, E. B. (1977). Sufficient statistics and latent trait models.Psychometrika, 42, 69–81.

    Google Scholar 

  • Bartholomew, D. J. (1988). The sensitivity of latent trait analysis to choice of prior distribution.British Journal of Mathematical and Statistical Psychology, 41, 101–107.

    Google Scholar 

  • Beaton, A. E. (1987).The NAEP 1983-84 technical report. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm.Psychometrika, 46, 443–459.

    Article  Google Scholar 

  • Bradley, R. A., & Gart, J. J. (1962). The asymptotic properties of ML estimators when sampling from associated populations.Biometrika, 49, 205–214.

    Google Scholar 

  • Cohen, L. (1979). Approximate expressions for parameter estimates in the Rasch model.British Journal of Mathematical and Statistical Psychology, 32, 113–120.

    Google Scholar 

  • Cressie, N., & Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models.Psychometrika, 48, 129–141.

    Google Scholar 

  • de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models.Journal of Educational Statistics, 11, 183–196.

    Google Scholar 

  • Engelen, R. J. H. (1987). Semiparametric estimation in the Rasch model (Research Report 87-1). Twente, The Netherlands: Department of Education, University of Twente.

    Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests.Psychometrika, 49, 223–245.

    Article  Google Scholar 

  • Kendall, M., & Stuart, A. (1979).The advanced theory statistics, Volume 2. New York: MacMillan.

    Google Scholar 

  • Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters,Annals of Mathematical Statistics, 27, 887–903.

    Google Scholar 

  • Lindsay, B. (1987). Semiparametric estimation in the Rasch model. Unpublished manuscript. Department of Statistics, Pennsylvania State University, University Park, PA.

    Google Scholar 

  • Little, R. J. A., & Rubin, D. B. (1987).Statistical analysis with missing data. New York: Wiley.

    Google Scholar 

  • Louis, T. (1982). Finding the observed information matrix when using the EM algorithm.Journal of the Royal Statistical Society, Series B,44, 226–233.

    Google Scholar 

  • Mislevy, R. J. (1987). Exploiting auxiliary information about examinees in the estimation of item parameters.Applied Psychological Measurement, 11, 81–91.

    Google Scholar 

  • Mislevy, R. J., & Bock, R. D. (1983).BILOG: Item analysis and test scoring with binary logistic models. Mooresville, IN: Scientific Software.

    Google Scholar 

  • Mislevy, R. J., & Sheehan, K. M. (in press). The information matrix in latent-variable models.Journal of Educational Statistics.

  • Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations.Econometrika, 16, 1–32.

    Google Scholar 

  • Orchard, T., & Woodbury, M. A. (1972). A missing information principle: Theory and applications.Procedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press.

    Google Scholar 

  • Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Rubin, D. B. (1976). Inference and missing data.Biometrika, 63, 581–592.

    Google Scholar 

  • Tjur, T. (1982). A connection between Rasch's item analysis model and a multiplicative Poisson model.Scandanavian Journal of Statistics, 9, 23–30.

    Google Scholar 

  • Tsutakawa, R. K. (1984). Estimation of two-parameter logistic item response curves.Journal of Educational Statistics, 9, 263–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Contract No. N00014-85-K-0683, project designation NR 150-539, from the Cognitive Science Program, Cognitive and Neural Sciences Division, Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government. We are indebted to Tim Davey, Eugene Johnson, and three anonymous referees for their comments on earlier versions of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mislevy, R.J., Sheehan, K.M. The role of collateral information about examinees in item parameter estimation. Psychometrika 54, 661–679 (1989). https://doi.org/10.1007/BF02296402

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02296402

Key words

Navigation