Skip to main content
Log in

Global tidal parameters

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Summary

Global tidal parameters are shown to have recently increased in accuracy, after more than twenty years of LLR and a decade of superconducting gravimetry, whereas the numerical values for the Earth have not changed substantially. Numerical values of Love numbers for terrestrial planets and the moon are also given for degrees higher than four as load numbers are basically linear combinations of Love numbers, at least for spherical non-rotation approximations. Numerical values for planetary moons, as far as they are known, have also been included in the paper. The static and dynamic behaviour of long-period and pole tide is discussed. Inner solid and outer fluid core effects are critically reviewed, also in view of a century of terrestrial tide observations of the classical type. The separation of long-period tides from secular effects (on a rotating Earth) such as Jn (n<5), is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Groten: The gravity field of the deformable Earth. Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, 2nd Winter Seminar on Geodynamics '89, Sopron 1989.

  2. E. Groten: Geophysical interpretation of tidal data. Proc. 11th Int. Sympos. on Earth Tides, Helsinki, 1989, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1991, pp. 23–38.

    Google Scholar 

  3. E W. Grafarend: Four lectures on deformable Earth and Gravity in Geodesy. Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, 2nd Winter Seminar on Geodynamics '89, Sopron 1989.

  4. D. D. McCarthy (Ed.): IERS Standards. IERS Technical Note 13, 1992.

  5. E. Groten: The motion of the Earth. Landolt-Börnstein, 1883–1983, New Series, Group V, Vol. 2, 1983.

  6. J. G. Williams, X. X. Newhall, J. O. Dickey: Diurnal and semidiurnal tidal contributions to lunar secular acceleration. AGU Abstract, May 1993.

  7. M. K. Cheng, R. J. Eanes, B. D. Tapley: Deceleration of the Moon's mean motion. Geophys. J. Int.,108 (1992), 401–409.

    Article  Google Scholar 

  8. H. Moritz, I. I. Mueller: Earth rotation. The Ungar Publishing Company. New York 1987.

    Google Scholar 

  9. D. J. Crossley, M. G. Rochester, Z. R. Peng: Slichter modes and Love Numbers. Geophys. Res. Lett.,19 (1992), 1679–1682.

    Article  Google Scholar 

  10. D. M. Crossley, M. G. Rochester, Z. R. Peng: Correction to "Slichter modes and Love numbers". Geophys. Res. Lett.,20 (1993), 333.

    Article  Google Scholar 

  11. P. Varga: Potential free Love numbers. Manuscripta geodaetica,8 (1983), 85–91.

    Google Scholar 

  12. P. Varga: Stresses of lunisolar origin acting at the core mantle boundary. Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences, 1992.

  13. J. B. Merriam: Toroidal Love numbers and transverse stress at the Earth's surface. J. Geophys. Res.,90 (1985), 7795–7802.

    Article  Google Scholar 

  14. Z. Martinec: The static, potential free Love numbers for a homogeneous Earth's model bounded by an irregular surface. Manuscripta Geodaetica,17 (1992), 186–200.

    Google Scholar 

  15. S. Y. Zhu, Ch. Reigber, F.-H. Massmann: Some improvements of the solid Earth tide model. Manuscripta Geodaetica,16 (1991), Nr. 4.

    Google Scholar 

  16. M. S. Molodensky: On the relation between the Love numbers and load coefficients. Fizika Zemli,3 (1977), 3–7,

    Google Scholar 

  17. C. Z. Zhang: Love numbers of the Moon and of the terrestrial planets. Earth, Moon, and Planets,56 (1992), 193–207.

    Article  Google Scholar 

  18. T. A. Herring, D. Dong: Current and future accuracy of Earth observation measurements. In: AGU Chapman Conf. Geodetic VLBI, Monitoring Global Change, NOAA TR NOS 137, NGS 49, 1991, pp. 306–324.

  19. T. M. VanDam, J. Wahr: Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and base line measurements. J. Geophys. Res.,92 (1987), 1281–1286.

    Article  Google Scholar 

  20. J. Wahr, D. De Vries: The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations. Geophys. J. Int.,99 (1989), 511–519.

    Article  Google Scholar 

  21. D. De Vries, J. M. Wahr: The effects of the solid inner core and nonhydrostatic structure on the Earth's forces nutations and Earth tide. J. Geophys. Res.,96 (1991), B5, 8275–8293.

    Article  Google Scholar 

  22. P. Cummins, J. M. Wahr: A study of the Earth's free core nutation using IDA gravity data. J. Geophys. Res.,98 (1993), B2, 2091–2103.

    Article  Google Scholar 

  23. P. Cummins, J. M. Wahr, D. C. Agnew, Y. Tamura: Constraining core undertones using stacked IDA gravity records. Geophys. J. Int.,106 (1991), 189–198.

    Google Scholar 

  24. V. Dehant, H. Legros, J. Hinderer, M. Lefftz: Phys. Earth Planet. Inter.,76 (1993), 259–282.

    Article  Google Scholar 

  25. P. Georgiadou, E. W. Grafarend: Global Vorticity and the definition for the rotation of a deformable Earth. Gerlands Beitr. Geophysik, Leipzig,95 (1986), Heft 6, 516–528.

    Google Scholar 

  26. E. W. Grafarend: Three-dimensional deformation analysis: Global vector spherical harmonic and local finite element representation. Tectonophysics,130 (1986), 337–359.

    Article  Google Scholar 

  27. E. W. Grafarend, M. Jarosch, W. Lindlohr: A computation of pole tides based on a set of Fourier coefficients of polar motion. IUGG, XVIII General Assembly, Hamburg, 15–27 Aug., 1983, Proc. of the IAG Symposia.

    Google Scholar 

  28. J. M. Wahr: The Earth's Rotation. An. Rev. Earth Planet. Sci.,16 (1988), 231–249.

    Article  Google Scholar 

  29. P. Melchior: A new data bank for tidal gravity measurements (DB 92). Observatoire Royal de Belgique, 1992.

  30. J. Kostelecký: Tidal Friction — On the phase lag of body tides. Studia geoph. et geod.,36 (1992), 302–306.

    Article  Google Scholar 

  31. V. Dehant, B. Ducarme, G. Jentzsch, J. Kääriäinen, G. Y. Li, S. M. Molodensky, S. Okubo, J. M. Wahr, Xi Quin-Wen, J. Zschau: Report of the working group on Theoretical Tidal Model. Proc. 11th Int. Symp. on Earth Tides, Helsinki 1989, Schweizerbartische Verlagsbuchhandlung, Stuttgart 1991, p. 533–548.

    Google Scholar 

  32. V. Dehant: New additions in the Wahr-Dehant model. (Manuscript, 1992).

  33. V. Dehant, B. Ducarme: Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Inter.,49 (1987), 192–212.

    Article  Google Scholar 

  34. V. Dehant: Review of the Earth tidal models and contribution of Earth tides in Geodynamics. J. Geophys. Res.,96 (1991), B12, 20235–20240.

    Article  Google Scholar 

  35. V. Dehant: Conclusions from the discussions of the WG on "Theoretical Tidal Model". Observatoire Royal de Belgique, Brussels, 1992.

    Google Scholar 

  36. P. Melchior, B. Ducarme: A study of the observed tidal residue vectors B versus oceanic tidal lead vectors L. Proc. 11th Sympos. on Earth Tides, Helsinki, 1989, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart 1991.

    Google Scholar 

  37. Q. Xiao, H. T. Hsu: The impule response of a PREM-Zschau Earth. Proc. 11th Sympos. on Earth Tides, Helsinki, 1989, E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 1991.

    Google Scholar 

  38. J. B. Merriam: An ephemeris for gravity tide predictions at the nanogal level. Geophys. J. Int.,108 (1992), 415–422.

    Article  Google Scholar 

  39. D. J. Crossley, M. G. Rochester: The subseismic approximation in core dynamics. Geophys. J. Int.,108 (1992), 502–506.

    Article  Google Scholar 

  40. M. Lefftz, H. Legros: Influence of viscoelastic coupling on the axial rotation of the Earth and its fluid core. Geophys. J. Int.,108 (1992), 725–739.

    Article  Google Scholar 

  41. D. E. Smylie, Xianhua Jiang, B. J. Brennan, Kachishige Sato: Numerical calculation of modes of oscillation of the Earth's core. Geophys. J. Int.,108 (1992), 465–490.

    Article  Google Scholar 

  42. E. W. Schwiderski: Global Ocean Tides, Part II: The Semidiurnal Principal Lunar Tide (M2); Atlas of Tidal Charts and Maps. Nav. Surf. Weapon Center TR 79-414, Dahlgren, Virg. 1979.

  43. D. E. Cartwright, R. D. Ray: Energetics of Global Ocean Tides from Geosat Altimetry. J. Geophys. Res.,96 (1991), C9, 16897–16912.

    Article  Google Scholar 

  44. A. Trupin, J. Wahr: Spectroscopic analysis of global tide gauge sea level data. Geophys. J. Int.,100 (1990), 441–453.

    Article  Google Scholar 

  45. T. M. VanDamm, J. Wahr: The atmospheric load response of the ocean determined using Geosat altimeter data. Geophys. J. Inter.,113 (1993), 1–16.

    Article  Google Scholar 

  46. S. R. Dickman: Dynamic ocean-tide effects on Earth's rotation. Geophys. J. Int.,112 (1993), 448–470.

    Article  Google Scholar 

  47. P. Brosche, J. Wünsche, J. Campbell, H. Schuh: Ocean tide effects in Universal Time detected by VLBI. Astron. Astrophys.,245 (1991), 676–682.

    Google Scholar 

  48. R. S. Gross: The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model. Geophys. Res. Lett.,20 (1993), 4, 293–296.

    Article  Google Scholar 

  49. U. Seiler: An investigation to the tides of the world ocean and their instantaneous angular momentum budget. Mitt. Inst. Meereskunde, Univ. Hamburg, Nr.29, 1989, pp. 101.

  50. J. Wünsch, U. Seiler: Theoretical amplitudes and phases of the periodic polar motion terms caused by ocean tides. Astron. Astrophys.,266 (1992), 581–587.

    Google Scholar 

  51. P. Brosche, J. Wünsch: Variations of the solid Earth's center of mass due to oceanic tides. Astron. Nachr.,314 (1993), 87–90.

    Article  Google Scholar 

  52. H. G. Scherneck: A pareametrized solid earth tide model for VLBI: Quality assessment 8th Working Meeting on European VLBI for geodesy and astrometry, Proc. MDTNO-R-9243, IV 31–38, Dwingeloo 1993.

  53. O. J. Sovers: Vertical Ocean Loading Amplitudes from VLBI Measurements. Preprint paper submitted to Geophys. Res. Lett., (1993).

  54. J. Wahr, H. Dazhong, A. Trupin, V. Lindquist: Secular changes in rotation and gravity: evidence of post-glacial rebound or of changes in polar ice? Proceedings of COSPAR conference, Aug. 1992, Washington. D.C., 1992, in press.

  55. A. S. Trupin, M. F. Meier, J. M. Wahr: Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984. Geophys. J. Int.,108 (1992), 1–15.

    Article  Google Scholar 

  56. J. X. Mitrovica, W. R. Peltier: Present-Day Secular Variations in the Zonal Harmonics of Earth's Geopotential. J. Geophys. Res.,98 (1993), B3, 4509–4526.

    Article  Google Scholar 

  57. M. Burša: Secular love number of Phobos. Bull. Astron. Inst. Czechosl.,39 (1988), 149–151.

    Google Scholar 

  58. P. Varga, C. Denis: Secular variations of the Earth's moment of inertia and related quantities. In: P. Brosche, J. Sündermann (Eds.), The Rotation of the Earth. Springer-Verlag, 1990, pp 163–176.

  59. R. S. Nerem, B. F. Chao: Temporal Variations of the Earth's Gravitational Field From Satellite Laser Ranging to Lageos. Geophys. Res. Lett.,20 (1993), 595–598.

    Article  Google Scholar 

  60. I. Gegout, A. Cazenave: Temporal variations of the Earth gravity field for 1985–1989 derived from LAGEOS. Geophys. J. Inter.,114 (1993), 347–359.

    Article  Google Scholar 

  61. B. F. Chao, A. Y. Au: Temporal variation of the Earth's low degree zonal gravitational field caused by atmospheric mass distribution: 1980–1988. J. Geophys. Res.,96 (1991), B4, 6569–6575.

    Article  Google Scholar 

  62. T. Varga, P. Varga, C. Denis: Tidal friction and planaeogeodesy: C.R. Journées Luxbg. Geodynamique,71 (1991), 7–11.

    Google Scholar 

  63. C. Denis, P. Varga, T. Varga, J. Zavoti: Actes des Journées 1992 Systemes de référence spatio-temporels "Géodynamique globale et Systemes de Référence". In: N. Capitaine, Observatoire de Paris, 1992.

  64. P. Varga, C. Denis, T. Varga, J. Zavoti: Statistical modelling of the tdal history of the Earth-Moon system. Journees Luxemourgeoises de Geodynamique, 73ieme session, 18 et 19 May, 1992.

  65. C. Denis, P. Varga: Tectonic consequences of the Earth's variable rotation on geological time scales. In: P. Brosche, J. Sündermann (Eds.), Earth's rotation from Eons to Days. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, Hong Kong, Barcelona, 1990, pp 146–162.

    Chapter  Google Scholar 

  66. M. Burša: Global Geodynamic Long-Term Variations and Expanding Earth Hypothesis. Studia geoph. et geod.,37 (1993), 113–124.

    Article  Google Scholar 

  67. M. Burša, V. Fialová: Parameters of the Earth's Tri-Axial Level Ellipsoid. Studia geoph. et geod.,37 (1993), 1–13.

    Article  Google Scholar 

  68. M. Burša: Tidal variations in the dynamic parameters of Phobos. Earth, Moon, and Planets,42 (1988), 227–232.

    Article  Google Scholar 

  69. M. Burša: Estimating mean densities of saturnian tri-axial satellites. Bull. Astron. Inst. Czechosl.,41 (1990), 104–107.

    Google Scholar 

  70. M. Burša: Angular momentum and tidal evolution of Saturn's system. Earth, Moon and Planets,54 (1991), 241–255.

    Article  Google Scholar 

  71. M. Burša: Deceleration in the Earth's rotation due to the Sun. Studia geoph. et geod.,35 (1991), 145–149.

    Article  Google Scholar 

  72. M. Burša: Long term variation in the secular Love number. Studia geoph. et geod.,32 (1988), 4–8.

    Article  Google Scholar 

  73. S. Y. Zhu: The equilibrium pole tide of the anelastic earth and its effect on the Chandler wobble. Chin. Astron. Astrophys.,17/2 (1993), 214–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the Memory of M. S. Molodensky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groten, E. Global tidal parameters. Stud Geophys Geod 38, 221–234 (1994). https://doi.org/10.1007/BF02295998

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295998

Keywords

Navigation