Skip to main content
Log in

A variable-selection heuristic for K-means clustering

  • Articles
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

One of the most vexing problems in cluster analysis is the selection and/or weighting of variables in order to include those that truly define cluster structure, while eliminating those that might mask such structure. This paper presents a variable-selection heuristic for nonhierarchical (K-means) cluster analysis based on the adjusted Rand index for measuring cluster recovery. The heuristic was subjected to Monte Carlo testing across more than 2200 datasets with known cluster structure. The results indicate the heuristic is extremely effective at eliminating masking variables. A cluster analysis of real-world financial services data revealed that using the variable-selection heuristic prior to the K-means algorithm resulted in greater cluster stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderberg, M.R. (1973).Cluster analysis for applications. New York, NY: Academic Press.

    Google Scholar 

  • Arabie, P., & Hubert, L.J. (1994). Cluster analysis in marketing research. In R.P. Bagozzi (Ed),Advanced methods in marketing research (pp. 160–189). Oxford, England: Blackwell.

    Google Scholar 

  • Arabie, P., & Hubert, L.J. (1996). An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, & G. De Soete (Eds),Clustering and classification (pp. 5–63). River Edge, NJ: World Scientific Publishing.

    Google Scholar 

  • Art, D., Gnanadesikan, R., & Kettenring, J.R. (1982). Data-based metrics for cluster analysis.Utilitas Mathematica, Series A, 21, 75–99.

    Google Scholar 

  • Balakrishnan, P.V., Cooper, M.C., Jacob, V.S., & Lewis, P.A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering.Psychometrika, 59, 509–525.

    Google Scholar 

  • Balasubramanian, S., Gupta, S., Kamakura, W., & Wedel, M. (1998). Modelling large data sets in marketing.Statistica Neerlandica, 52, 303–323.

    Google Scholar 

  • Berry, M.J.A., & Linoff, G. (1997).Data mining techniques: For marketing, sales, and customer support. New York, NY: John Wiley & Sons.

    Google Scholar 

  • Blattberg, R., Glazer, R., & Little, J. (1994).The marketing information revolution. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Box, G.E.P., & Muller, M.E. (1958). A note on the generation of random normal deviates.Annals of Mathematical Statistics, 29, 610–611.

    Google Scholar 

  • Breckenridge, J.N. (1989). Replicating cluster analysis: Method, consistency, and validity.Multivariate Behavioral Research, 24, 147–161.

    Google Scholar 

  • Carmone, F.J., Kara, A., & Maxwell, S. (1999). HINoV: A new model to improve market segmentation by identifying noisy variables.Journal of Marketing Research, 36, 501–509.

    Google Scholar 

  • Chaturvedi, A., Carroll, J.D., Green, P.E., & Rotondo, J.A. (1997). A feature-based approach to market segmentation via overlapping K-centroids clustering.Journal of Marketing Research, 34, 370–377.

    Google Scholar 

  • Cheng, R., & Milligan, G.W. (1996). K-means clustering methods with influence detection.Educational and Psychological Measurement, 56, 833–838.

    Google Scholar 

  • Cormack, R.M. (1971). A review of classification (with Discussion).Journal of the Royal Statistical Society, Series A, 134, 321–367.

    Google Scholar 

  • DeSarbo, W.S., Carroll, J.D., Clark, L.A., & Green, P.E. (1984). Synthesized clustering: A method for amalgamating alternative clustering bases with different weighting of variables.Psychometrika, 49, 57–78.

    Google Scholar 

  • DeSarbo, W.S., Manrai, A.K., & Manrai, L.A. (1993). Non-spatial tree models for the assessment of competitive market structure: An integrated review of the marketing and psychometric literature. In J. Eliashberg & G. Lilien (Eds),Handbook in operations research and management science: Marketing (pp. 193–257), New York, NY: Elsevier.

    Google Scholar 

  • De Soete, G. (1986). Optimal variable weighting for ultrametric and additive tree clustering.Quality and Quantity, 20, 169–180.

    Google Scholar 

  • De Soete, G. (1988). OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting.Journal of Classification, 5, 101–104.

    Google Scholar 

  • De Soete, G., DeSarbo, W.S., & Carroll, J.D. (1985). Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm.Journal of Classification, 2, 173–192.

    Google Scholar 

  • Fowlkes, E.B., Gnanadesikan, R., & Kettenring, J.R. (1987). Variable selection in clustering and other contexts. In C.L. Mallows (Ed.),Design, data, and analysis (pp. 13–34). New York, NY: John Wiley & Sons.

    Google Scholar 

  • Fowlkes, E.B., Gnanadesikan, R., & Kettenring, J.R. (1988). Variable selection in clustering.Journal of Classification, 5, 205–228.

    Google Scholar 

  • Fowlkes, E.B., & Mallows, C.L. (1983). A method for comparing two hierarchical clusterings (with comments and rejoinder).Journal of the American Statistical Association, 78, 553–584.

    Google Scholar 

  • Friedman, H.P., & Rubin, J. (1967). On some invariant criteria for grouping data.Journal of the American Statistical Association, 62, 1159–1178.

    Google Scholar 

  • Gnanadesikan, R., Kettenring, J.R., & Tsao, S.L. (1995). Weighting and selection of variables for cluster analysis.Journal of Classification, 12, 113–136.

    Google Scholar 

  • Green, P.E., Carmone, F.J., & Kim, J. (1990). A preliminary study of optimal variable weighting in K-means clustering.Journal of Classification, 7, 271–285.

    Google Scholar 

  • Helsen, K., & Green, P.E. (1991). A computational study of replicated clustering with an application to market segmentation.Decision Sciences, 22, 1124–1141.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions.Journal of Classification, 2, 193–218.

    Google Scholar 

  • Knuth, D.E. (1997).The art of computing: Vol. 1. Fundamental algorithms. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Krieger, A., & Green, P.E. (1999). A generalized rand-index method for consensus clustering of separate partitions of the same data base.Journal of Classification, 16, 63–89.

    Google Scholar 

  • Kruskal, J.B. (1972). Linear transformations of multivariate data to reveal clustering. In R.N. Shepard, A.K. Romney, & S.B. Nerlove (Eds),Multidimensional scaling: Theory and applications in the behavioral sciences (pp. 181–191). New York, NY: Seminar Press.

    Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, I, 231–297.

    Google Scholar 

  • McIntyre, R.M., & Blashfield, R.K. (1980). A nearest-centroid technique for evaluating the minimum variance clustering procedure.Multivariate Behavioral Research, 15, 225–238.

    Google Scholar 

  • Milligan, G.W. (1980). An examination of six types of the effect of six types of error perturbation on fifteen clustering algorithms.Psychometrika, 45, 325–342.

    Google Scholar 

  • Milligan, G.W. (1985). An algorithm for generating artificial test clusters.Psychometrika, 50, 123–127.

    Google Scholar 

  • Milligan, G.W. (1989). A validation study of a variable-weighting algorithm for cluster analysis.Journal of Classification, 6, 53–71.

    Google Scholar 

  • Milligan, G.W. (1996). Clustering validation: Results and implications for applied analyses. In P. Arabie, L.J. Hubert, & G. De Soete (Eds.),Clustering and classification (pp. 341–375). River Edge, NJ, World Scientific Publishing.

    Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis.Multivariate Behavioral Research, 21, 441–458.

    Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1988). A study of the standardization of variables in cluster analysis.Journal of Classification, 5, 181–204.

    Google Scholar 

  • Milligan, G.W., Soon, S.C., & Sokol, L.M. (1983). The effect of cluster size, dimensionality, and the number of clusters on the recovery of true cluster structure.IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 40–47.

    Google Scholar 

  • Morey, L.C., Blashfield, R.K., & Skinner, H.A. (1983). A comparison of cluster analysis techniques within a sequential validation framework.Multivariate Behavioral Research, 18, 309–329.

    Google Scholar 

  • Rand, W.M. (1971). Objective criteria for evaluating clustering methods.Journal of the American Statistical Association, 66, 846–850.

    Google Scholar 

  • Rohlf, F.J. (1970). Adaptive hierarchical clustering schemes.Systematic Zoology, 19, 58–82.

    Google Scholar 

  • Salstone, R., & Stange, K. (1996). A computer program to calculate Hubert and Arabie's adjusted Rand index.Journal of Classification, 13, 169–172.

    Google Scholar 

  • Ward, J.H. (1963). Hierarchical grouping to optimize an objective function.Journal of the American Statistical Association, 58, 236–244.

    Google Scholar 

  • Waller, N.G., Kaiser, H.A., Illian, J.B., & Manry, M. (1998). A comparison of the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning and three hierarchical cluster analysis algorithms.Psychometrika, 63, 5–22.

    Google Scholar 

  • Wedel, M., & Kamakura, W.A. (1997).Market segmentation: Conceptual and methodological foundations. Boston, MA: Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Brusco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusco, M.J., Cradit, J.D. A variable-selection heuristic for K-means clustering. Psychometrika 66, 249–270 (2001). https://doi.org/10.1007/BF02294838

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294838

Key words

Navigation