Skip to main content
Log in

Maximum marginal likelihood estimation for semiparametric item analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The item characteristic curve (ICC), defining the relation between ability and the probability of choosing a particular option for a test item, can be estimated by using polynomial regression splines. These provide a more flexible family of functions than is given by the three-parameter logistic family. The estimation of spline ICCs is described by maximizing the marginal likelihood formed by integrating ability over a beta prior distribution. Some simulation results compare this approach with the joint estimation of ability and item parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. A. (1964)Handbook of mathematical functions. New York: Dover.

    Google Scholar 

  • Andersen, E. (1973). Conditional inference and multiple choice questionnaires.British Journal of Mathematical and Statistical Psychology, 26, 31–44.

    Google Scholar 

  • Atkinson, A. C. (1979). A family of switching algorithms for the computer generation of beta random variates.Biometrika, 66, 141–145.

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.

    Google Scholar 

  • Bock, R. D., & Lieberman, M. (1970). Fitting a response model forn dichotomously scored items.Psychometrika, 35, 179–197.

    Google Scholar 

  • Brieman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation (with discussion).Journal of the American Statistical Association, 80, 580–618.

    Google Scholar 

  • de Leeuw, J. (1988). Multivariate analysis with linearizable regressions.Psychometrika, 53, 437–454.

    Google Scholar 

  • Drasgow, F., Levine, M. V., Williams, B., McLaughlin, M. E., & Candell, G. L. (1989). Modeling incorrect responses to multiple-choice items with multilinear formula score theory.Applied Psychological Measurement, 13, 285–299.

    Google Scholar 

  • Golub, G. H., & Welsch, J. H. (1969). Calculation of Gauss quadrature rules.Mathematics of Computation, 23, 221–230.

    Google Scholar 

  • Levine, M. V. (1984).An introduction to multilinear formula score theory (Measurement Series 84-5). Champaign, IL: University of Illinois, Department of Educational Psychology, Model-Based Measurement Laboratory.

    Google Scholar 

  • Levine, M. V. (1985). The trait in latent trait theory. In D. J. Weiss (Ed.).Proceedings of the 1982 item response theory/ computerized adaptive testing conference (pp. 41–65). Minneapolis: University of Minnesota, Department of Psychology, Computerized Adaptive Testing Laboratory.

    Google Scholar 

  • Lewis, C. (1986). Test theory andPsychometrika: The past twenty-five years,Psychometrika, 51, 11–22.

    Google Scholar 

  • Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Mislevy, R. J., & Bock, R. D. (1982).BILOG: Item analysis and test scoring with binary logistic models [Computer Program]. Mooresville, IN: Scientific Software.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986).Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ramsay, J. O. (1988). Monotone regression splines in action (with discussion).Statistical Science, 3, 425–461.

    Google Scholar 

  • Ramsay, J. O. (1989). A comparison of three simple test theory models.Psychometrika, 54, 487–499.

    Google Scholar 

  • Ramsay, J. O., & Abrahjamowicz, M. (1989). Binomial regression with monotone splines: A psychometric application.Journal of the American Statistical Association, 84, 906–915.

    Google Scholar 

  • Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen: Danmarks Paedagogiske Institut.

    Google Scholar 

  • Samejima, F. (1977). A method of estimating item characteristic functions using the maximum likelihood estimate of ability.Psychometrika, 42, 161–191.

    Google Scholar 

  • Samejima, F. (1979).A new family of models for the multiple choice item (Research Report No. 79-4). Knoxville: University of Tennessee, Department of Psychology.

    Google Scholar 

  • Samejima, F. (1984).Plausibility functions of Iowa Vocabulary Test items estimated by the simple sum procedure of the conditional P.D.F. approach (Research Report No. 84-1). Knoxville: University of Tennessee, Department of Psychology.

    Google Scholar 

  • Stoer, J., & Bulirsch, R. (1980).Introduction to numerical analysis. New York: Springer-Verlag.

    Google Scholar 

  • Tibshirani, R. J. (1988). Estimating transformations for regression via additivity and variance stabilization.Journal of the American Statistical Association, 83, 394–405.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1980). Monotonic transformations to addivity using splines.Biometrika, 67, 669–674.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1983). Monotonic spline transformations for dimension reduction.Psychometrika, 48, 403–423.

    Google Scholar 

  • Winsberg, S., Thissen, D., & Wainer, H. (1984).Fitting item characteristic curves with spline functions (Technical Report No. 84-52). Princeton, NJ, Educational Testing Service.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

IRCAM

The research reported in this paper was supported by Grants APA320 and A4035 from the Natural Sciences and Engineering Research Council of Canada. It was also supported by Contract No. F41689-82-C-10020 from the Air Force Human Resources Laboratory to Educational Testing Service. The author wishes to thank M. Abrahamowicz for his assistance and R. Darrell Bock for providing the parameters for the items used in the simulations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, J.O., Winsberg, S. Maximum marginal likelihood estimation for semiparametric item analysis. Psychometrika 56, 365–379 (1991). https://doi.org/10.1007/BF02294480

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294480

Key words

Navigation