Skip to main content
Log in

Generalized bilinear models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Generalized bilinear models are presented for the statistical analysis of two-way arrays. These models combine bilinear models and generalized linear modeling, and yield a family of models that includes many existing models, as well as suggest other potentially useful ones. This approach both unifies and extends models for two-way arrays, including the ability to treat response and explanatory variables differently in the models, and the incorporation of external information about the variables directly into the analysis. A unifying framework for the generalized bilinear models is provided by considering four particular cases which have been proposed and used in the existing statistical literature. A three-step procedure is proposed to analyze data sets by generalized bilinear models. Two data sets of different nature are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, J. (1983). Principal component analysis of compositional data.Biometrika, 70(1), 57–65.

    Google Scholar 

  • Aitchison, J. (1986).The analysis of compositional data. NY: Chapman and Hall.

    Google Scholar 

  • Andersen, E. B. (1980).Discrete statistical models with social science applications. Amsterdam: North Holland.

    Google Scholar 

  • Baccini, A., Caussinus, H., & Falguerolles, A. (1991). Comment (to Goodman's paper).Journal of the American Statistical Association, 86, 1115–1117.

    Google Scholar 

  • Becker, M. P. (1990a). Quasisymmetric models for the analysis of square contingency tables.Journal of the Royal Statistical Society, Series B., 52, 369–378.

    Google Scholar 

  • Becker, M. P. (1990b). Maximum likelihood estimation of theRC(M) association model.Applied Statistics, 39, 152–167.

    Google Scholar 

  • Beecher, H. K. (1959). Measurement of subjective responses. Oxford, England: Oxford University Press.

    Google Scholar 

  • Benzécri, J. P. (1976).L'Analyse des Données: Tome 2, L'Analyse des Correspondances [Data Analysis: 2nd Volume, Correspondence Analysis]. Paris: Dunod.

    Google Scholar 

  • Bishop, Y. V. (1969). Full contingency tables, logits, and split contingency tables.Biometrics, 25, 119–128.

    Google Scholar 

  • Coombs, C. H. (1964).A theory of data. New York: Wiley.

    Google Scholar 

  • Darroch, J. N., & Mosimann, J. E. (1985). Canonical and principal components of shape.Biometrika, 72, 241–252.

    Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphical display of matrices with application to principal component analysis.Biometrika, 58, 453–462.

    Google Scholar 

  • Gabriel, K. R. (1978). Least squares approximation of matrices by additive and multiplicative models.Journal of Royal Statistical Society, Series B, 40, 186–196.

    Google Scholar 

  • Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques.Psychometrika, 33, 73–115.

    Google Scholar 

  • Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.Journal of the American Statistical Association, 74, 537–552.

    Google Scholar 

  • Goodman, L. A. (1981). Association models and canonical correlation in the analysis of cross-classifications having ordered categories.Journal of the American Statistical Association, 76, 320–334.

    Google Scholar 

  • Goodman, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries.Annals of Statistics, 13, 10–69.

    Google Scholar 

  • Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables.International Statistical Review, 54, 243–309.

    Google Scholar 

  • Goodman, L. A. (1991). Measures, models, and graphical displays in the analysis of cross-classified data (with discussion).Journal of the American Statistical Association, 86, 1085–1138.

    Google Scholar 

  • Gower, J. C. (1966). Some distance properties of latent roots and vector methods used in multivariate analysis.Biometrika, 53, 325–388.

    Google Scholar 

  • Gower, J. C. (1989). Discussion of the paper by Van der Heijden, de Falguerolles and de Leeuw.Applied Statistics, 38, 275–276.

    Google Scholar 

  • Greenacre, M. J. (1984).Theory and applications of correspondence analysis. Academic Press: N.Y.

    Google Scholar 

  • Haberman, S. J. (1978).Analysis of qualitative data. New York: Academic Press.

    Google Scholar 

  • Holland, P. W., & Thayer, D. T. (1983). Using modern statistical methods to improve the presentation of the annual summaries of GRE candidate background data (ETS Research Report, 83-8). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Kazmierczak, J. B. (1985a). Analyse logarithmique: deux exemples d'application [Logarithmic analysis: Two examples of application].La Revue de Statistique Appliquée, 33, 13–24.

    Google Scholar 

  • Kazmierczak, J. B. (1985b). Une application du principe de Yule: l'analyse logarithmique [An application of Yule's principle: Logarithmic analysis]. In Diday et al. (Eds.), Proceedings of the fourth InternationalSymposium on Data Analysis and Informatics (pp. 393–403). Amsterdam: North Holland.

    Google Scholar 

  • Kazmierczak, J. B. (1987). Sur l'usage d'un principe d'invariance pour aider au choix d'une métrique [The use of an invariance criterion for the choice of a metric].Statistique et Analyse des Données, 12, 37–57.

    Google Scholar 

  • Lauro, N. C., & D'Ambra, L. (1984). L'analyse non symmetrique des correspondances [Nonsymmetrical correspondence analysis]. In Diday et al. (Eds.),Data Analysis and Informatics III (pp. 433–446). Amsterdam: North Holland.

    Google Scholar 

  • Mandel, J. (1961). Non-additivity in two-way analysis of variance.Journal of the American Statistical Association, 56, 878–888.

    Google Scholar 

  • Mandel, J. (1971). A new analysis of variance model for non-additive data.Technometrics, 13, 1–18.

    Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989).Generalized Linear Models (2nd ed.). NY: Chapman and Hall.

    Google Scholar 

  • Moolgavkar, S. H., Stevens, R. G., & Lee, J. A. H. (1979). Effect of age on incidence of breast cancer in females.Journal of the National Cancer Institute, 62, 493–501.

    Google Scholar 

  • Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Nishisato, S., & Lawrence, D. R. (1989). Dual scaling of multiway data matrices: Several variants. In R. Coppi & S. Bolasco (Eds.),Multiway Data Analysis (pp. 317–326). Amsterdam: North Holland.

    Google Scholar 

  • Pettitt, A. N. (1989). One degree of freedom for nonadditivity: Applications with generalized linear models.Biometrics, 45, 1153–1162.

    Google Scholar 

  • Rao, C. R. (1964). The use and interpretation of principal components analysis in applied research.Sankhya A, 26, 239–358.

    Google Scholar 

  • Rao, C. R. (1973).Linear statistical inference and its applications (2nd ed.). NY: Wiley and Sons.

    Google Scholar 

  • Rice, J. A. (1988).Mathematical Statistics and Data Analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole.

    Google Scholar 

  • Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables.Psychometrika, 56, 97–120.

    Google Scholar 

  • Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • Tukey, J. W. (1949). One degree of freedom for non-additivity.Biometrics, 5, 232–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is very grateful to Shizuhiko Nishisato, the associate editor and the referees for their valuable comments, which resulted in a completely improved version of an earlier manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choulakian, V. Generalized bilinear models. Psychometrika 61, 271–283 (1996). https://doi.org/10.1007/BF02294339

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294339

Key words

Navigation