Skip to main content
Log in

Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein

  • Review Article
  • Published:
Journal of Neurocytology

Summary

The myelin-associated glycoprotein, a member of the immunoglobulin superfamily, has been implicated in the formation and maintenance of myelin sheaths. In addition, recent studies have demonstrated that myelin-associated glycoprotein is inhibitory for neurite elongationin vitro and it has therefore been suggested that myelin-associated glycoprotein prevents axonal regeneration in lesioned nervous tissue. The generation of mice deficient in the expression of myelin-associated glycoprotein by targeted disruption of themag gene via homologous recombination in embryonic stem cells has allowed the study of the functional role of this moleculein vivo. This review summarizes experiments aimed at answering the following questions: (i) is myelin-associated glycoprotein involved in the formation and maintenance of myelin in the CNS? and (ii) does myelin-associated glycoprotein restrict axonal regeneration in the adult mammalian CNS? Analysis of optic nerves from mutant mice revealed a delay in myelination when compared to optic nerves of wild-type animals, a lack of a periaxonal cytoplasmic collar from most myelin sheaths, and the presence of some doubly and multiply myelinated axons. Axonal regeneration in the CNS of adult myelin-associated glycoprotein deficient mice was not improved when compared to wild-type animals. These observations indicate that myelin-associated glycoprotein is functionally involved in the recognition of axons by oligodendrocytes and in the morphological maturation of myelin sheaths. However, results do not support a role of myelin-associated glycoprotein as a potent inhibitor of axonal regeneration in the adult mammalian CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguayo, A. J. (1985) Axonal regeneration from injured neurons in the adult mammalian central nervous system. InSynaptic Plasticity (edited byCotman, C. W.) pp. 457–84. New York: The Guilford Press.

    Google Scholar 

  • Aguayo, A. J., Charron, L. &Bray, G. M. (1976) Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study.Journal of Neurocytology 5, 565–73.

    Google Scholar 

  • Arquint, M., Roder, J., Chia, L. S., Down, J., Wilkinson, D., Bayley, H., Braun, P. &Dunn, R. (1987) Molecular cloning and primary structure of myelin-associated glycoprotein.Proceedings of the National Academy of Sciences (USA) 84, 600–4.

    Google Scholar 

  • Bähr, M., Przyrembel, C. &Bastmeyer, M. (1995) Astrocytes from adult rat optic nerves are nonpermissive for regenerating retinal ganglion cell axons.Experimental Neurology 131, 211–20.

    Google Scholar 

  • Bandtlow, C. E., Zachleder, T. &Schwab, M. E. (1990) Oligodendrocytes arrest neurite growth by contact inhibition.Journal of Neuroscience 10, 3837–48.

    Google Scholar 

  • Bandtlow, C. E., Schmidt, M. F., Hassinger, T. D., Schwab, M. E. &Kater, S. B. (1993) Role of intracellular calcium in NI-35-evoked collapse of neuronal growth cones.Science 259, 80–3.

    Google Scholar 

  • Barton, D. E., Arquint, M., Roder, J., Dunn, R. &Francke, U. (1987) The myelin-associated glycoprotein gene: mapping to human chromosome 19 and mouse chromosome 7 and expression in quivering mice.Genomics 1, 107–12.

    Google Scholar 

  • Bartsch, U., Kirchhoff, F. &Schachner, M. (1989) Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice.Journal of Comparative Neurology 284, 451–62.

    Google Scholar 

  • Bartsch, U., Kirchhoff, F. &Schachner, M. (1990) Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina.Journal of Neurocytology 19, 550–65.

    Google Scholar 

  • Bartsch, U., Faissner, A., Trotter, J., Dörries, U., Bartsch, S., Mohajeri, H. &Schachner, M. (1994) Tenascin demarcates the boundary between the myelinated and nonmyelinated part of retinal ganglion cell axons in the developing and adult mouse.Journal of Neuroscience 14, 4756–68.

    Google Scholar 

  • Bartsch, U., Montag, D., Bartsch, S. &Schachner, M. (1995a) Multiply myelinated axons in the optic nerve of mice deficient for the myelin-associated glycoprotein.Glia 14, 115–22.

    Google Scholar 

  • Bartsch, U., Bandtlow, C. E., Schnell, L., Bartsch, S., Spillmann, A. A., Rubin, B. P., Hillenbrand, R., Montag, D., Schwab, M. E. &Schachner, M. (1995b) Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS.Neuron,15, 1375–81.

    Google Scholar 

  • Bastmeyer, M., Beckmann, M., Schwab, M. E. &Stuermer, C. A. O. (1991) Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not by goldfish optic nerve tract oligodendrocytelike cells and fish CNS myelin.Journal of Neuroscience 11, 626–40.

    Google Scholar 

  • Bedi, K. S., Winter, J., Berry, M. &Cohen, J. (1992) Adult rat dorsal root ganglion neurons extend neurites on predegenerated but not on normal peripheral nervesin vitro.European Journal of Neuroscience 4, 193–200.

    Google Scholar 

  • Bhat, S. &Silberberg, D. H. (1990) Expression of the neural cell adhesion molecule in dysmyelinating mutants.Brain Research 535, 39–42.

    Google Scholar 

  • Bradel, E. J. &Prince, F. P. (1983) Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons.Journal of Neuroscience Research 9, 381–92.

    Google Scholar 

  • Bray, G. M., Rasminsky, M. &Aguayo, A. J. (1981) Interactions between axons and their sheath cells.Annual Review of Neuroscience 4, 127–62.

    Google Scholar 

  • Brown, M. C., Perry, V. H., Hunt, S. P. &Lapper, S. R. (1994) Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration.European Journal of Neuroscience 6, 420–8.

    Google Scholar 

  • Caroni, P. &Schwab, M. E. (1988a) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading.Journal of Cell Biology 106, 1281–8.

    Google Scholar 

  • Caroni, P. &Schwab, M. E. (1988b) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter.Neuron 1, 85–96.

    Google Scholar 

  • Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., Barthels, D., Rajewsky, K. &Wille, W. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning.Nature 367, 455–9.

    Google Scholar 

  • D'Eustachio, P., Colman, D. R. &Salzer, J. L. (1988) Chromosomal location of the mouse gene that encodes the myelin-associated glycoproteins.Journal of Neurochemistry 50, 589–93.

    Google Scholar 

  • Davies, S. J. A., Field, P. M. &Raisman, G. (1994) Long interfascicular axon growth from embryonic neurons transplanted into adult myelinated tracts.Journal of Neuroscience 14, 1596–1612.

    Google Scholar 

  • Dubois-Dalcq, M., Behar, T., Hudson, L. &Lazzarini, R. A. (1986) Emergence of three myelin proteins in oligodendrocytes cultured without neurons.Journal of Cell Biology 102, 384–92.

    Google Scholar 

  • Fawcett, J. W., Rokos, J. &Bakst, I. (1989) Oligodendrocytes repel axons and cause axonal growth cone collapse.Journal of Cell Science 92, 93–100.

    Google Scholar 

  • Filbin, M. T. (1995) Myelin-associated glycoprotein: a role in myelination and in the inhibition of axonal regeneration?Current Opinion in Neurobiology 5, 588–95.

    Google Scholar 

  • Frail, D. E., Webster, H. DEF. &Braun, P. E. (1985) Developmental expression of the myelin-associated glycoprotein in the peripheral nervous system is different from that in the central nervous system.Journal of Neurochemistry 45, 1308–10.

    Google Scholar 

  • Fruttiger, M., Montag, D., Schachner, M. &Martini, R. (1995) Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity.European Journal of Neuroscience 7, 511–15.

    Google Scholar 

  • Heath, J. W. (1982) Double myelination of axons in the sympathetic nervous system.Journal of Neurocytology 11, 249–62.

    Google Scholar 

  • Hildebrand, C., Remahl, S., Persson, H. &Bjartmar, C. (1993) Myelinated nerve fibres in the CNS.Progress in Neurobiology 40, 319–84.

    Google Scholar 

  • Hirano, A. &Dembitzer, H. M. (1967) A structural analysis of the myelin sheath in the central nervous system.Journal of Cell Biology 34, 555–67.

    Google Scholar 

  • Hudson, L. D. (1990) Molecular biology of myelin proteins in the central and peripheral nervous systems.Seminars in the Neurosciences 2, 483–96.

    Google Scholar 

  • Inuzuka, T., Fujita, N., Sato, S., Baba, H., Nakano, R., Ishiguro, H. &Miyatake, T. (1991) Expression of the large myelin-associated glycoprotein isoform during the development in the mouse peripheral nervous system.Brain Research 562, 173–5.

    Google Scholar 

  • Johnson, P. W., Abramow-Newerly, W., Seilheimer, B., Sadoul, R., Tropak, M. B., Arquint, M., Dunn, R. J., Schachner, M. &Roder, J. C. (1989) Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function.Neuron 3, 377–85.

    Google Scholar 

  • Johnson, A. R. (1993) Contact inhibition in the failure of mammalian CNS axonal regeneration.BioEssays 15, 807–13.

    Google Scholar 

  • Keirstead, H. S., Hasan, S. J., Muir, G. D. &Steeves, J. D. (1992) Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord.Proceedings of the National Academy of Sciences (USA) 89, 11664–8.

    Google Scholar 

  • Keynes, R. J. &Cook, G. M. W. (1995) Repulsive and inhibitory signals.Current Opinion in Neurobiology 5, 75–82.

    Google Scholar 

  • Kidd, G. J. &Heath, J. W. (1988) Double myelination of axons in the sympathetic nervous system of the mouse. II. Mechanisms of formation.Journal of Neurocytology 17, 263–76.

    Google Scholar 

  • Knapp, P. E., Bartlett, W. P. &Skoff, R. P. (1987) Cultured oligodendrocytes mimicin vivo phenotypic characteristics: cell shape, expression of myelin-specific antigens, and membrane production.Developmental Biology 120, 356–65.

    Google Scholar 

  • Lai, C., Brow, M. A., Nave, K.-A., Noronha, A. B., Quarles, R. H., Bloom, F. E., Milner, R. J. &Sutcliffe, J. G. (1987) Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing.Proceedings of the National Academy of Sciences (USA) 84, 4337–41.

    Google Scholar 

  • Lemke, G. (1993) The molecular genetics of myelination: an update.Glia 7, 263–71.

    Google Scholar 

  • Li, C., Tropak, M. B., Gerial, R., Clapoff, S., Abramow-Newerly, W., Trapp, B., Peterson, A. &Roder, J. (1994) Myelination in the absence of myelin-associated glycoprotein.Nature 369, 747–50.

    Google Scholar 

  • Martini, R. (1994) Myelin-associated glycoprotein is not detectable in perikaryal myelin of spiral ganglion neurons of adult mice.Glia 10, 311–14.

    Google Scholar 

  • Martini, R. &Schachner, M. (1986) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve.Journal of Cell Biology 103, 2439–48.

    Google Scholar 

  • McKerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J. &Braun, P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth.Neuron 13, 805–11.

    Google Scholar 

  • Mohajeri, M. H., Bartsch, U., Van Der Putten, H., Sansig, G., Mucke, L. & Schachner, M. (1996) Neurite outgrowth on non-permissive substrates is enhanced by ectopic expression of the neural adhesion molecule L1 by mouse astrocytes.European Journal of Neuroscience, in press.

  • Montag, D., Giese, K. P., Bartsch, U., Martini, R., Lang, Y., Blüthmann, H., Karthigasan, J., Kirschner, D. A., Winter-Gerst, E. S., Nave, K.-A., Zielasek, J., Toyka, K. V., Lipp, H.-P. &Schachner, M. (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin.Neuron 13, 229–46.

    Google Scholar 

  • Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. &Filbin, M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration.Neuron 13, 757–67.

    Google Scholar 

  • Nait Oumesmar, B., Vignais, L., Duhamel-Clérin, E., Avellana-Adalid, V., Rougon, G. &Baronvan Evercooren, A. (1995) Expression of the highly polysialylated neural cell adhesion molecule during postnatal myelination and following chemically induced demyelination of the adult mouse spinal cord.European Journal of Neuroscience 7, 480–91.

    Google Scholar 

  • Nave, K.-A. (1994) Neurological mouse mutants and the genes of myelin.Journal of Neuroscience Research 38, 607–12.

    Google Scholar 

  • Owens, G. C. &Bunge, R. P. (1989) Evidence for an early role for myelin-associated glycoprotein in the process of myelination.Glia 2, 119–28.

    Google Scholar 

  • Ownes, G. C. &Bunge, R. P. (1991) Schwann cells infected with a recombinant retrovirus expressing myelin-associated glycoprotein antisense RNA do not form myelin.Neuron 7, 565–75.

    Google Scholar 

  • Owens, G. C., Boyd, C. J., Bunge, R. P. &Salzer, J. L. (1990) Expression of recombinant myelin-associated glycoprotein in primary Schwann cells promotes the initial investment of axons by myelinating Schwann cells.Journal of Cell Biology 111, 1171–82.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. DEF. (1991)The Fine Structure of the Nervous System. New York, Oxford: Oxford University Press.

    Google Scholar 

  • Poltorak, M., Sadoul, R., Keilhauer, G., Landa, C., Fahrig, T. &Schachner, M. (1987) Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction.Journal of Cell Biology 105, 1893–9.

    Google Scholar 

  • Ramon Y Cajal, S. (1928)Degeneration and Regeneration of the Nervous System. London, New York: Oxford University Press.

    Google Scholar 

  • Sadoul, R., Fahrig, T., Bartsch, U. &Schachner, M. (1990) Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures.Journal of Neuroscience Research 25, 1–13.

    Google Scholar 

  • Salzer, J. L., Holmes, W. P. &Colman, R. D. (1987) The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily.Journal of Cell Biology 104, 957–65.

    Google Scholar 

  • Savio, T. &Schwab, M. E. (1990) Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord.Proceedings of the National Academy of Sciences (USA) 87, 4130–3.

    Google Scholar 

  • Schachner, M., Taylor, J., Bartsch, U. &Pesheva, P. (1994) The perplexing multifunctionality of janusin, a tenascin-related molecule.Perspectives on Developmental Neurobiology 2, 33–41.

    Google Scholar 

  • Schneider-Schaulies, J., Kirchhoff, F., Archelos, J. &Schachner, M. (1991) Down-regulation of myelin-associated glycoprotein on Schwann cells by interferon-γ and tumor necrosis factor-α affects neurite outgrowth.Neuron 7, 995–1005.

    Google Scholar 

  • Schnell, L. &Schwab, M. E. (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors.Nature 343, 269–72.

    Google Scholar 

  • Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.-A. &Schwab, M. E. (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion.Nature 367, 170–3.

    Google Scholar 

  • Schwab, M. E., Kapfhammer, J. P. &Bandtlow, C. E. (1993) Inhibitors of neurite growth.Annual Review of Neuroscience 16, 565–95.

    Google Scholar 

  • Shewan, D., Berry, M. &Cohen, J. (1995) Extensive regenerationin vitro by early embryonic neurons on immature and adult CNS tissue.Journal of Neuroscience 15, 2057–62.

    Google Scholar 

  • Sivron, T., Schwab, M. E. &Schwartz, M. (1994) Presence of growth inhibitors in fish optic nerve myelin: postinjury changes.Journal of Comparative Neurology 343, 237–46.

    Google Scholar 

  • Snipes, G. J., Suter, U. &Shooter, E. M. (1993) The genetics of myelin.Current Opinion in Neurobiology 3, 694–702.

    Google Scholar 

  • Sternberger, N. H., Quarles, R. H., Itoyama, Y. &Webster, H. DEF. (1979) Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat.Proceedings of the National Academy of Sciences (USA) 76, 1510–14.

    Google Scholar 

  • Trapp, B. D. (1990) Myelin-associated glycoprotein. Location and potential functions.Annals of the New York Academy of Sciences 605, 29–43.

    Google Scholar 

  • Trapp, B. D., Quarles, R. H. &Suzuki, K. (1984) Immunocytochemical studies of quaking mice support a role of the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells.Journal of Cell Biology 99, 594–606.

    Google Scholar 

  • Trapp, B. D., Andrews, S. B., Cootauco, C. &Quarles, R. H. (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes.Journal of Cell Biology 109, 2417–26.

    Google Scholar 

  • Tropak, M. B., Johnson, P. W., Dunn, R. J. &Roder, J. C. (1988) Differential splicing of MAG transcripts during CNS and PNS development.Molecular Brain Research 4, 143–55.

    Google Scholar 

  • Vanselow, J., Schwab, M. E. &Thanos, S. (1990) Responses of regenerating rat retinal ganglion cell axons to contacts with central nervous myelinin vitro.European Journal of Neuroscience 2, 121–5.

    Google Scholar 

  • Waehneldt, T. V. (1990) Phylogeny of myelin proteins.Annals of the New York Academy of Sciences 605, 15–28.

    Google Scholar 

  • Wang, C., Rougon, G. &Kiss, J. Z. (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants.Journal of Neuroscience 14, 4446–57.

    Google Scholar 

  • Weibel, D., Cadelli, D. &Schwab, M. E. (1994) Regeneration of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors.Brain Research 642, 259–66.

    Google Scholar 

  • Weinberg, H. J. &Spencer, P. S. (1976) Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production.Brain Research 113, 363–78.

    Google Scholar 

  • Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. &Björklund, A. (1990) Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts.Nature 347, 556–8.

    Google Scholar 

Note added in proof

  • Schäfer, M., Fruttiger, M., Montag, D., Schachner, M. & Martini R. (1996) Disruption of the gene for the myelin-associated glycoprotein leads to improved axonal regrowth along non-degenerated myelin in C57BL/WldS mice.Neuron, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, U. Myelination and axonal regeneration in the central nervous system of mice deficient in the myelin-associated glycoprotein. J Neurocytol 25, 303–313 (1996). https://doi.org/10.1007/BF02284804

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284804

Keywords

Navigation