Skip to main content
Log in

Calcification in sea urchins

I. A Tetracycline investigation of growth of the mature test inStrongylocentrotus intermedius

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Growth of the test ofStrongylocentrotus intermedius was examined with the aid of tetracycline. In summer specimens, tetracycline fluorescence was not observable in the plates, except in the apical system and its adjacent area. An array of fibrous elements with a milky white autofluorescence was oriented perpendicularly to each suture line. In winter specimens the elements were evident only in demineralized sections. The growth gradient of each plate estimated on winter specimens was as follows: longitudinal sture » inner surface = mammelon and part of boss in tubercle > latitudinal suture > outer surface of base of spine shaft > outer surface of plate itself. The mature test as a whole increases in size by two modes of growth, an addition of new plates to the apical system and an accretion on fixed sites of each plate. The results suggest that fibrous elements are involved in the test growth, and that there is a different mechanism of the test growth between summer and winter specimens. The apical system may be equipped with a specific mechanism of calcification which permits an active formation of new plates throughout the year.

Résumé

La croissance de la carapace deStrongylocentrotus intermedius est étudiée à l'aide de la tétracycline. Des specimens de l'été ne présentent pas de fluorescence dans les plaques, sauf dans le système apical et les régions voisines. Un faisceau d'éléments fibreux, présentant une autofluorescence blanche laiteuse, est orienté perpendiculairement à chaque ligne de suture. Les spécimens de l'hiver ne présentent ces éléments qu'après décalcification des coupes. La croissance de chaque plaque, chez ces derniers s'effectue de la façon suivante: suture longitudinale » surface interne = mamelon et bosse du tubercule > suture transversale > surface externe de la base de l'épine dorsale > surface externe de la plaque. La carapace adulte augmente de taille selon deux mécanismes de croissance: d'une part, par adjonction de nouvelles plaques au système apical et, d'autre part, par apposition sur des régions données de chaque plaque. Il apparait que des éléments fibreux sont intéressés par la croissance de la carapace et qu'un mécanisme différent de croissance s'observe dans les carapaces de l'été et de l'hiver. Le système apical semble se calcifier selon un mécanisme spécifique qui permet une formation active de plaques nouvelles pendant toute l'année.

Zusammenfassung

Das Wachstum des Skeletes vonStrongylocentrotus intermedius wurde mit Hilfe von Tetracyclin untersucht. Bei Sommerexemplaren konnte die Tetracyclinfluorescenz in den Platten nicht beobachtet werden, außer im apicalen System und seiner anliegenden Umgebung. Eine Menge von fibrösen Elementen mit einer milchig-weißen Autofluorescenz war senkrecht zu jeder Nahtlinie angeordnet. Bei Winterexemplaren waren diese Elemente nur in demineralisierten Schnitten deutlich sichtbar. Der Wachstumsgradient jeder Platte war bei Winterexemplaren der folgende: Longitudinalnaht » innere Oberfläche = Terminalknopf und Hals der Tuberkel > Latitudinalnaht > Oberfläche der Basis des Stachels > äußere Oberfläche der Platte selbst. Das ausgewachsene Skelet als Ganzes vergrößert seinen Umfang auf zwei Wachstumsarten, einerseits durch Zusatz von neuen Platten zum apikalen System, anderseits durch Zuwachs an bestimmten Stellen von jeder Platte. Die Resultate lassen vermuten, daß fibröse Elemente am Skeletwachstum beteiligt sind und daß der Mechanismus dieses Wachstums bei Sommer- und bei Winterexemplaren verschieden ist. Es wäre denkbar, daß das apikale System auf einen spezifischen Mechanismus der Verkalkung ansprechen würde, welcher eine aktive Bildung neuer Platten während des ganzen Jahres erlaubt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. M.: Aspects of nutritional physiology. In: Physiology of echinodermata, p. 329–357, ed. by R. A. Boolootian. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • Bevelander, G., Nakahara, H.: Correlation between tetracycline binding and mineralization in dentin and enamel. Anat. Rec.153, 141–148 (1965).

    Google Scholar 

  • Boolootian, R. A.: Reproductive physiology. In: Physiology of echinodermata, p. 561–613, ed. by R. A. Boolootian. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • Chave, K. E.: A solid solution between calcite and dolomite. J. Geol.60, 190–192 (1952).

    Google Scholar 

  • Chave, K. E.: Aspects of the biogeochemistry of magnesium I. Calcareous marine organism. J. Geol.62, 266–283 (1954).

    Google Scholar 

  • Cockbain, A. E.: Pentamerism in echinoderms and the calcite skeleton. Nautre (Lond.)212, 740–741 (1966).

    Google Scholar 

  • Currey, J. D., Nichols, D.: Absence of organic phase in echinoderm calcite. Nature (Lond.)214, 81–83 (1967).

    Google Scholar 

  • Durham, J. W.: Classification of clypeasteroid echinoids. Bull. Dept. Geol. Univ. Calif.31, 73–198 (1955).

    Google Scholar 

  • Finerman, G. A. M., Milch, R. A.:In vitro binding of tetracycline to clacium. Nature (Lond.)198, 486–487 (1963).

    Google Scholar 

  • Frost, H. M., Villanueva, A. R., Roth, H., Stanisavljevic, S.: Tetracycline bone labeling. J. New Drugs1, 206–216 (1961).

    Google Scholar 

  • Fuji, A.: Ecological studies on the growth and food consumption of Japancese common littoral sea urchin,Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ.15, 83–160 (1967).

    Google Scholar 

  • Greenfield, L., Giese, A. C., Farmanfarmaian, A., Boolootian, R. A.: Cyclic biochemical changes in several echinoderms. J. exp. Zool.139, 507–524 (1958).

    Google Scholar 

  • Hammarström, L.: Different localization of tetracycline and simultaneously injected radiocalcium in developing enamel. Calc. Tiss. Res.1, 229–242 (1967).

    Google Scholar 

  • Harvey, E. N.: Bioluminescence, p. 649. New York: Academic Press 1952.

    Google Scholar 

  • Holland, L. Z., Giese, A. C., Phillips, J. H.: Studies on the perivisceral coelomic fluid protein concentration during sesonal and nutritional changes in the purple sea urchin. Comp. Biochem. Physiol.21, 361–371 (1967).

    Google Scholar 

  • Hulth, A., Olerud, S.: Tetracycline labeling of growing bone. Acta Soc. Med. upsalien.67, 219–231 (1962).

    Google Scholar 

  • Jowsey, J., Gershon-Cohen, J.: Clinical and experimental osteoporosis. In: Bone and tooth, p. 35–48, ed. by H. J. J. Blackwood. Oxford-London-New York-Paris: Pergamon Press 1964.

    Google Scholar 

  • Kawamura, K.: On the age determining character and growth of a sea urchin,Strongylocentrotus nudus. Sci. Rep. Hokkaido Fish. Exp. Stat.6, 56–61 (1966).

    Google Scholar 

  • Kitano, Y., Furutsu, T.: The state of a small amount of magnesium contained in calcareous shells. Bull. Chem. Soc. Japan33, 1–4 (1959).

    Google Scholar 

  • Milch, R. A., Rall, D. P., Tobie, J. E.: Bone localization of the tetracyclines. J. nat. Cancer Inst.19, 87–93 (1957).

    Google Scholar 

  • —, Tobie, J. E., Robinson, R. A.: A microscopic study of tetracycline localization in skeletal neoplasms. J. Histochem. Cytochem.9, 261–270 (1961).

    Google Scholar 

  • Millott, N.: Light production. Physiology of echinodermata, p. 487–501, ed. by R. A. Boolootian. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • Moschi, A., Little, K.: Fluorescent properties of the non-collagenous components of the intervertebral disk. Nature (Lond.)212, 722 (1966).

    Google Scholar 

  • Moss, M. L., Meehan, M. M.: Sutural connective tissues in the test of an echinoidArbacia punctata. Acta anat. (Basel)66, 279–304 (1967).

    Google Scholar 

  • Okazaki, K.: Skeleton formation of sea urchin larvae. III. Similarity of effect of low calcium and high magnesium on spicule formation. Biol. Bull.120, 177–182 (1961).

    Google Scholar 

  • Prentice, A. I. D.: Autofluorescence of bone tissue. J. clin. Path.20, 717–719 (1967).

    Google Scholar 

  • Raup, D. M.: The endoskeleton. In: Physiology of echinodermata, ed. by R. A. Boolootian, p. 379–395. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • —, Swan, E. F.: Crystal orientation in the apical plates of aberrant echinoids. Biol. Bull.133, 618–629 (1967).

    Google Scholar 

  • Sawada, Y.: Studies on the fluorescence of the pearls. Bull. nat. Pearl Res. Lab.4, 340–346 (1958).

    Google Scholar 

  • Steendjik, R.: Studies on the mechanism of the fixation of the tetracyclines to bone. In: Bone and tooth, ed. by H. J. J. Blackwood, p. 49–63. Oxford-London-New York-Paris: Pergamon Press 1964.

    Google Scholar 

  • Swan, E. F.: Growth, autotomy, and regeneration. In: Physiology of echinodermata, ed. by R. A. Boolootian, p. 397–434. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • Takahashi, K.: Muscle physiology. In: Physiology of echinodermata, ed. by R. A. Boolootian, p. 513–527. New York-London-Sydney: John Wiley & Sons 1966.

    Google Scholar 

  • Towe, K. M.: Echinoderm calcite: single crystal or polycrystalline aggregate. Science157, 1048–1050 (1967).

    Google Scholar 

  • Travis, D. F., François, C. J., Bonar, L. C., Glimcher, M. J.: Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruct. Res.18, 519–550 (1967).

    Google Scholar 

  • Vanderhoeft, P. J., Peterson, L. F. A., Kelly, P. J.: A method for correlative analysis of microradiogram and tetracyclinefluorophore of puppy's bone. Proc. Mayo Clin.37, 229–235 (1962a).

    Google Scholar 

  • —, Kelly, P. J., Peterson, L. F. A.: Determination of growth rates in canine bone by means of tetracycline labeled patterns. Lab. Invest.11, 714–726 (1962b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Taki, J. Calcification in sea urchins. Calc. Tis Res. 4, 210–223 (1969). https://doi.org/10.1007/BF02279124

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02279124

Key words

Navigation