Skip to main content
Log in

The measurement problem resolved and local realism preserved via a collapse-free photon detection model

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A new realislic local model of light propagation and detection is described. The authors propose a novel stochastic model of low-intensity photon detection in which background noise is added to a part of the photon prior to absorption. In this model, in agreement with Planck, there is no quantization of the propagating field. The model has some similarities to theories advanced by E. Santos and T. Marshall in the last decade, but also has substantial deviations from these. A mechanism, conserving energy and momentum, is proposed by which a sudden collapse of the wave-packet is avoided. The experimental Bell inequality violation of Aspect. Grangier and Roger [Phys. Rev. Lett.47, 460 (1981)]is discussed. The authors have carried out a computer simulation of a radio frequency (RF) analogue of the Einstein-Podolsky-Rosen thought experiment to illustrate how the manipulation of certain factors, especially signal to noise ratio, detector threshold and characteristics of the noise, enables the same Bell inequality to be either satisfied or violated by a realistic local model. Building on arguments by Santos. [Phys. Rev. A46. 3646 (1992)],the appropriateness of this Bell lest is discussed. Neither the authors' stochastic-optical model, nor their RF analogue, involves an enhancement assumption of the type defined by Clauser and Horne [Phys. Rev. D10, 526 (1974)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. M. Morsc and H. Feshbach.Methods of Theoretical Physics (McGraw-Hill, New York, 1953). Vol. 1, pp. 222 ff.

    Google Scholar 

  2. M. Redhead,Incompleteness, Nonlocality and Realism (Clarendon Press, Oxford, 1987), pp. 49 ff.

    Google Scholar 

  3. A. Rac.Quantum Physics: Illusion or Reality (Cambridge University Press. Cambridge, 1994). pp. 48–62.

    Google Scholar 

  4. A. Einstein, B. Podolsky, and N. Rosen.Phys. Rev. 47. 777 (1935).

    Google Scholar 

  5. D. Bohm.Phys. Rev. 85. 166 (1952).

    Google Scholar 

  6. J. S. Bell.Physics 1, 195 (1964).

    Google Scholar 

  7. J. F. Clauser and M. A. Horne.Phts. Rev. D 10, 526 (1974).

    Google Scholar 

  8. J. F. Clauser and A. Shimony.Rep. Prog. Phys. 41, 1881 (1978).

    Google Scholar 

  9. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt.Phys. Rev. Lett. 23, 880 (1969).

    Google Scholar 

  10. J. W. G. Wignall.Found. Phys. 18, 591 (1988).

    Google Scholar 

  11. A. Pais. “Subtle is the Lord...” The Science and Life of Albert Einstein (Clarendon. Oxford. 1982), p. 384.

    Google Scholar 

  12. D. G. C. Jones,Eur. J. Phys. 15, 170 (1994).

    Google Scholar 

  13. T. Marshall and E. Santos.Found. Phys. 18, 185 (1988).

    Google Scholar 

  14. P. Grangier, G. Roger, and A. Aspect.Europhys. Lett. 1, 173 (1986).

    Google Scholar 

  15. G. I. Taylor.Proc. Cambridge Philos. Soc. 15, 114 (1909).

    Google Scholar 

  16. E. Santos. inOpen Questions in Quantum Physics. Gino Tarozzi and Alwyn van der Merwe. eds. (Reidel. Dordrecht. The Netherlands. 1985). pp. 283–296.

    Google Scholar 

  17. T. H. Boyer.Phys. Rev. D 29, 1096 (1984).

    Google Scholar 

  18. T. W. Marshall.Found. Phys. 21. 209 (1991).

    Google Scholar 

  19. L. de la Peńa and A. M. Cetto.The Quantum Dicc (Kluwer, Dordrecht. The Netherlands. 1995).

    Google Scholar 

  20. J. Horgan.Sci. Am. 267, 76 (1992).

    Google Scholar 

  21. A. Aspect, P. Grangier, and G. Roger.Phys. Rev. Lett. 47, 460 (1981)

    Google Scholar 

  22. A. Aspect. P. Grangier. and G. Roger.Phys. Rev. Lett. 49, 91 (July 1982)

    Google Scholar 

  23. A. Aspect J. Dalibard. and G. Roger.Phys. Rev. Lett. 49, 1804 (Dec. 1982).

    Google Scholar 

  24. Ref. 9. p. 408.

    Google Scholar 

  25. E. Hecht.Optics. 2nd edn. (Addison-Wesley, Reading, Massachusetts. 1987), p. 541.

    Google Scholar 

  26. A. Messiah.Quantum Mechanics (North-Holland, Amsterdam, 1961), Vol. 1. p. 29

    Google Scholar 

  27. S. Gasiorowicz.The structure of Matter: a Surrey of Modern Physics (Addison-Wesley, Reading, Massachusetts, 1979), p. 151.

    Google Scholar 

  28. R. P. Feynman. R. B. Leighton, and M. L. Sands.The Feynman Lectures on Physics, Commemorative Issue (Addison-Wesley, Redwood City, California, 1989). Vol. 1. Chap. 32. pp. 14 and Chap. 38. p. 6.

    Google Scholar 

  29. J. D. Jackson.Classical Electrodynamics. 2nd edn. (Wiley. New York. 1975). p. 244.

    Google Scholar 

  30. A. Messiah.Quantum Mechanics (North-Holland, Amsterdam, 1961). Vol. II, p. 933.

    Google Scholar 

  31. W. D. Stanley.Electronic Communication Systems (Reston Publishing Company, Prentice-Hall, Reston, Virginia, 1982). Chaps. 8 and 9.

    Google Scholar 

  32. L. de Broglie.Introduction to the Vigier Theory of Elementary Particlas (Elsevier. Amsterdam. 1963). pp. 131–133.

    Google Scholar 

  33. D. M. Munroe,Recovering Signals from Noise and Special Measurement Problems Involving Low Level Radiation. Seminar Notes (EG&G Princeton Applied Research. Princeton. New Jersey. 1980).

    Google Scholar 

  34. E. Santos.Phys. Rev A. 46, 3646 (1992).

    Google Scholar 

  35. F. Selleri, ed.,Quantum Mechanics Versus Local Realism: The Einstein-Podolsky Rosen Paradox (Plenum. New York, 1988).

    Google Scholar 

  36. S. J. Freedman and J. F. Clauser,Phys. Rev. Lett. 28, 938 (1972).

    Google Scholar 

  37. A. Aspect, PhD. Thesis. Chap. VI, Section C (1982), unpublished, C. H. Thompson. Eng. trans. (University of Wales. Aberystwyth, United Kingdom, 1996). unpublished.

    Google Scholar 

  38. Ref. 21. pp. 292–300.

    Google Scholar 

  39. Ref. 21. p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, B.C., Sulcs, S. The measurement problem resolved and local realism preserved via a collapse-free photon detection model. Found Phys 26, 1401–1439 (1996). https://doi.org/10.1007/BF02272365

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02272365

Keywords

Navigation