Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shemin, D., andD. Rittenberg: The utilization of glycine for the synthesis of a porphyrin. J. of Biol. Chem.159, 567 (1945).

    CAS  Google Scholar 

  2. ——: The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin. J. of Biol. Chem.166, 621 (1946).

    CAS  Google Scholar 

  3. ——: The life span of the human red blood cell. J. of Biol. Chem.166, 627 (1946).

    CAS  Google Scholar 

  4. London, I. M., D. Shemin, R. West andD. Rittenberg: Heme synthesis and red blood cell dynamics in normal humans and in subjects with polycythemia vera, sickle-cell anemia, and pernicious anemia. J. of Biol. Chem.179, 463 (1949).

    CAS  Google Scholar 

  5. Gray, C. H., andA. Neuberger: Studies in congenital porphyria. I. Incorporation of N15 with coproporphyrin, uroporphyrin and hippuric acid. Biochem. J.47, 81 (1950).

    PubMed  CAS  Google Scholar 

  6. Shemin, D.: The biosynthesis of porphyrins. Cold Spring Harbor Symp. Quant. Biol.13, 185 (1948).

    CAS  Google Scholar 

  7. Wittenberg, J., andD. Shemin: The utilization of glycine for the biosynthesis of both types of pyrroles in protoporphyrin. J. of Biol. Chem.178, 47 (1949).

    CAS  Google Scholar 

  8. Muir, H. M., andA. Neuberger: The biogenesis of porphyrins. The distribution of N15 in the ring system. Biochemic. J.43, lx (1948);45, 163 (1949).

    Google Scholar 

  9. Shemin, D., I. M. London andD. Rittenberg: The synthesis of protoporphyrin in vitro by red blood cells of the duck. J. of Biol. Chem.173, 799 (1948);183, 757 (1950).

    CAS  Google Scholar 

  10. London, I. M., D. Shemin andD. Rittenberg: Synthesis of heme in vitro by the immature non-nucleated mammalian erythrocyte. J. of Biol. Chem.173, 797 (1948);183, 749 (1950).

    CAS  Google Scholar 

  11. Altman, K. I., G. W. Casarett, R. E. Masters, T. R. Noonan andK. Solomon: Hemoglobin synthesis from glycine labeled with radioactive carbon in its α-carbon atom. J. of Biol. Chem.176, 319 (1948).

    CAS  Google Scholar 

  12. Radin, N., D. Rittenberg andD. Shemin: The role of glycine in the biosynthesis of heme. Federat. Proc.8, 240 (1949). — J. Biol. Chem.184, 745 (1950).

    Google Scholar 

  13. Wittenberg, J., andD. Shemin: The location in protoporphyrin of the carbon atoms derived from the α-carbon atom of glycine. J. of Biol. Chem.185, 103 (1950).

    CAS  Google Scholar 

  14. Muir, H. M., andA. Neuberger: The biogenesis of porphyrins. 2. The origin of the methyne carbon atoms. Biochemic. J.45, XXXIV (1949);47, 97 (1950).

    Google Scholar 

  15. Grinstein, M., M. Kamen andC. V. Moore: Observation on the utilization of glycine in the biosynthesis of hemoglobin. J. of Biol. Chem.174, 767 (1948).

    CAS  Google Scholar 

  16. Shemin, D., andJ. Wittenberg: The mechanism of porphyrin formation. The role of the tricarboxylic acid cycle. J. of Biol. Chem.192, 315 (1951). Isotopes in biochemistry. Ciba Found. Conf. London, Churchill, p. 41, 1951.

    CAS  Google Scholar 

  17. — Some aspects of the biosynthesis of amino acids. Cold Spring Harbor Symp. Quant. Biol.14, 161 (1949).

    CAS  Google Scholar 

  18. Bloch, K., andD. Rittenberg: An estimation of acetic acid formation in the rat. J. of Biol. Chem.159, 45 (1945).

    CAS  Google Scholar 

  19. Radin, N. S., D. Rittenberg andD. Shemin: The role of acetic acid in the biosynthesis of heme. Federat. Proc.8, 240 (1949). — J. of Biol. Chem.184, 755 (1950).

    Google Scholar 

  20. Shemin, D., andS. Kumin: The mechanism of porphyrin formation. The formation of a succinyl intermediate from succinate. J. of Biol. Chem.198, 827 (1952).

    CAS  Google Scholar 

  21. Wriston, J. C., L. Lack andD. Shemin: The mechanism of porphyrin formation. Further evidence on the relationship of the citric acid cycle and porphyrin formation. Federat. Proc.12, 294 (1953). — J. of Biol. Chem.215, 603 (1955).

    Google Scholar 

  22. London, I. M., andM. Yamasaki: Heme synthesis in non-intact mammalian and avian erythrocytes. Federat. Proc.11, 250 (1952).

    Google Scholar 

  23. Shemin, D., andC. S. Russell: δ-Aminolevulinic acid; its role in the biosynthesis of porphyrins and purines. J. Amer. Chem. Soc.75, 4873 (1953).

    Article  CAS  Google Scholar 

  24. —,T. Abramsky andC. S. Russell: The synthesis of protoporphyrin from δ-aminolevulinic acid in a cell-free extract. J. Amer. Chem. Soc.76, 1204 (1954).

    Article  CAS  Google Scholar 

  25. —,C. S. Russell andT. Abramsky: The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J. of Biol. Chem.215, 613 (1955).

    CAS  Google Scholar 

  26. Schiffmann, E., andD. Shemin: The conversion of δ-aminolevulinic acid to protoporphyrin. J. of Biol. Chem. (in press).

  27. Neuberger, A., andJ. J. Scott: Aminolevulinic acid and porphyrin biosynthesis. Nature (Lond.)172, 1093 (1953).

    Article  CAS  Google Scholar 

  28. Dresel, E. I. B., andJ. E. Falk: Conversion of δ-aminolevulinic acid to porphobilinogen in a tissue system. Nature (Lond.)172, 1185 (1953).

    Article  CAS  Google Scholar 

  29. Westall, R. G.: Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature (Lond.)170, 614 (1952).

    Article  CAS  Google Scholar 

  30. Cookson, G. H., andC. Rimington: Porphobilinogen. Chemical constitution. Nature (Lond.)171, 875 (1953).

    Article  CAS  Google Scholar 

  31. Weliky, I., andD. Shemin: The metabolism of α-amino-β-ketoadipic acid. Unpublished observations.

  32. Gibson, K. D., A. Neuberger andJ. J. Scott: The enzymic conversion of δ-aminolevulic acid to porphobilinogen. Biochemic. J.58, XLI (1954).

    CAS  Google Scholar 

  33. ———: The purification and properties of δ-aminolaevulic acid dehydrase. Biochemic. J.61, 6181 (1955).

    Google Scholar 

  34. Schmid, R., andD. Shemin: The enzymatic formation of porphobilinogen from δ-aminolevulinic acid and its conversion to protoporphyrin. J. Amer. Chem. Soc.77, 506 (1955).

    Article  CAS  Google Scholar 

  35. Granick, S.: Enzymatic conversion of δ-aminolevulinic acid to porphobilinogen. Science (Lancaster, Pa.)120, 1105 (1954).

    CAS  Google Scholar 

  36. Falk, J. E., E. I. B. Dresel andC. Rimington: Porphobilinogen as a porphyrin precursor, and interconversion of porphyrins in a tissue system. Nature (Lond.)172, 292 (1953).

    Article  CAS  Google Scholar 

  37. Bogorad, L., andS. Granick: The enzymic synthesis of porphyrins from porphobilinogen. Proc. Nat. Acad. Sci. U.S.A.39, 1176 (1953).

    Article  CAS  Google Scholar 

  38. Cookson, G. H., andC. Rimington: Porphobilinogen. Biochemic. J.57, 476 (1954).

    CAS  Google Scholar 

  39. Corwin, A. H., andJ. S. Andrews: Studies in the pyrrole series. III. The relation of tripyrrolmethane cleavage to methene synthesis. J. Amer. Chem. Soc.59, 1973 (1937).

    Article  CAS  Google Scholar 

  40. Andrews, J. S., A. H. Corwin andA. G. Sharp: 1,4,5,8-Tetramethyl-2,3,6,7-tetra-carbethoxyporphyrin and some derivatives. J. Amer. Chem. Soc.72, 491 (1950).

    Article  CAS  Google Scholar 

  41. Neve, R. A., R. F. Labbe andR. A. Aldrich: Reduced uroporphyrin III in the biosynthesis of heme. J. Amer. Chem. Soc.78, 691 (1956).

    Article  CAS  Google Scholar 

  42. Karlsson, J. L., andH. A. Barker: Biosynthesis of uric acid labeled with radioactive carbon. J. of Biol. Chem.177, 597 (1949).

    CAS  Google Scholar 

  43. Sakami, W.: The conversion of glycine into serine in the intact rat. J. of Biol. Chem.178, 519 (1949).

    CAS  Google Scholar 

  44. Winnick, T., I. Moring-Claesson andD. M. Greenberg: Distribution of radioactive carbon among certain amino acids of liver homogenate protein, following uptake experiments with labeled glycine. J. of Biol. Chem.175, 127 (1948).

    CAS  Google Scholar 

  45. Arnstein, H. R. V.: The biosynthesis of choline methyl groups in the rat. Biochemic. J.47, XVIII (1950).

    CAS  Google Scholar 

  46. Jonsson S., andW. A. Mosher: Thein vivo synthesis of labile methyl groups. J. Amer. Chem. Soc.72, 3316 (1950).

    Article  CAS  Google Scholar 

  47. Weissbach, A., D. Elwyn andD. B. Sprinson: The synthesis of the methyl groups and enthanolamine moiety of choline from serine and glycine in the rat. J. Amer. Chem. Soc.72, 3316 (1950).

    Article  CAS  Google Scholar 

  48. Russell, C. S., S. Gatt, G. L. Foster andD. Shemin: Unpublished observations.

  49. Gatt, S., andD. Shemin: The metabolism of aminoacetone and its relation to glycine metabolism. Ph.D. dissertation, Columbia University, 1955.—Shemin, D., in: Amino acid metabolism (W. D. McElroy andB. Glass). Baltimore: The Johns Hopkins Press 1955.

  50. Scott, J. J.: The metabolism of δ-aminolaevulic acid. In: The biosynthesis of porphyrins and porphyrin metabolism, p. 43. Ciba Found. Conf. London: Churchill, 1955.

    Google Scholar 

  51. Nemeth, A., C. S. Russell andD. Shemin: The succinate-glycine cycle: the metabolism of δ-aminolevulinic acid. Manuscript in preparation.

  52. Labbe, R. F., T. Abramsky andD. Shemin: Studies on the formation of δ-aminolevulinic. Manuscript in preparation.

  53. Hodgkin, D. C., S. Pickworth, J. H. Robertson, K. Trueblood, R. J. Piozen andJ. G. White: Structure of vitamins B12. Nature (Lond.)176, 325 (1955).

    Article  CAS  Google Scholar 

  54. Bonnett, R., J. R. Cannon, A. W. Johnson, I. Sutherland, A. R. Todd andE. L. Smith: The structure of vitamin B12 and its hexacarboxylic acid degradation product. Nature (Lond.)176, 328 (1955).

    Article  CAS  Google Scholar 

  55. Shemin, D., J. W. Corcoran, C. Rosenblum andI. M. Miller: On the biosynthesis of porphyrin-like moiety of vitamin B12. Science124, 272 (1956).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

This work was supported by grants from the National Institutes of Health, United States Public Health Service (A-1101 (C7)), from the American Cancer Society on the recommendation of the Commitee on Growth of the National Research Council, from the Rockefeller Foundation and from the Williams-Waterman Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shemin, D. The biosynthesis of porphyrins. Ergebnisse der Physiologie und exper. Pharmakologie 49, 299–326 (1957). https://doi.org/10.1007/BF02269486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269486

Navigation