Skip to main content
Log in

Quantification of baboon cortical S2 serotonin receptors in vivo with 3-N-(2′-Fl8)fluoroethylspiperone and positron emission tomography

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We used the ligand 3-N-(2′-F 18)fluoroethylspiperone (FESP) and positron emission tomography (PET) to quantify in vivo serotonin S2 neuroreceptor density and affinity in the baboon frontal cortex. In the cortex, FESP binds specifically and exclusively to S2 receptors, and an equilibrium is reached when the rate of ligand-receptor association and dissociation become equal. Using multiple studies in the same baboon, an equilibrium (saturation) analysis approach provided a linear Hill plot with a slope of 1.02 (r 2 =0.988,P <0.0001), indicative of ligand binding to a single receptor class. Using serial PET scans, a dynamic approach was also used to quantify S2 receptors in the frontal cortex of the baboon, which provided an estimate of receptor densityB max =35.6 ± 10.9 pmol/g. The rate constants corresponding to transport into and out of tissue wereK 1* = 0.2720 ± 0.0299 mol/min ⁗ g andk 2* = 0.0786 ± 0.0315 min−1, respectively. The ligand-receptor dissociation constant wask 4* = 0.0154 ± 0.0109 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baron JC, Samson Y, Crouzel C, Berridge M, Chretien L, Deniker P, Comar D, Agid Y (1985) Pharmacological studies in man with PET: an investigation using 11C-labeled ketanserin, a 5HT2 receptor antagonist. In: Hartmann A, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer, Berlin Heidelberg New York, pp 471–480

    Google Scholar 

  • Bergström M, Litton J, Eriksson L, Bohm C, Blomqvist G (1982) Determination of object contour from projections for attenuation-correction in cranial PET. J Comput Assist Tomogr 6:365–372

    PubMed  Google Scholar 

  • Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered-radiation in a ring-detector-positron-camera by integral-transformation of the projections. J Comput Assist Tomogr 7(1):42–50

    PubMed  Google Scholar 

  • Coenen HH, Laufer P, Stöcklin G, Wienhard K, Pawlik G, Böcher-Schwarz HG, Heiss W-D (1987) 3-N-([2′-18 F]fluoroethyl)spiperone: a novel ligand for cerebral dopamine receptor studies with PET. Life Sci 40:81–88

    Article  PubMed  Google Scholar 

  • Coenen HH, Wienhard K, Stöcklin G, Laufer P, Hebold I, Pawlik G (1988) PET measurements of D2 and S2 receptor binding of 2-([2′-18 F[fluoroethylspiperone) in baboon brain. Eur J Nucl Med 14:80–87

    Article  PubMed  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    Google Scholar 

  • Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET — a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    PubMed  Google Scholar 

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317

    Article  Google Scholar 

  • Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Gjedde A, Wong DF (1987) Positron tomographic quantitation of neuroreceptors in human brain in vivo — with special references to the D2 dopamine receptors in the caudate nucleus. Neurosurg Rev 10:9–17

    Article  PubMed  Google Scholar 

  • Huang SC, Barrio JR, Phelps ME (1986) Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J Cereb Blood Flow Metab 6:515–521

    PubMed  Google Scholar 

  • Huang SC, Balm MM, Barrio JR, Hoffmann JM, Satyamurthy N, Hawkins RA, Mazziotta JC, Phelps ME (1988) In vivo measurement of serotonin S2 neuroreceptor densities in primates with 3-(2-[F-18]fluoroethyl)spiperone (FESP) and PET using a double-injection method (abstract). J Nucl Med 29(5):809

    Google Scholar 

  • James F (1978) Interpretation of the errors on parameters as given by MINUIT. CERN computer center program library (Suppl) (Jan. 1978)

  • James F, Roos M (1976) MINUIT — a system for function minimization and analysis of the parameter errors and correlations. Comput Ph 10:343–376

    Article  Google Scholar 

  • Jovkar S, Wienhard K, Pawlik G, Coenen HH (1990) The quantitative analysis of D2 dopamine receptors in baboon striatum in vivo with 3-([2′-18 F]fluoroethylspiperone) using positron emission tomography. J Cereb Blood Flow Metab 10:720–726

    PubMed  Google Scholar 

  • Litton J, Bergström M, Eriksson L, Bohm C, Blomqvist G, Kesselberg M (1984) Performance study of the PC-384 positron camera system for the brain. J Comput Assist Tomogr 8:74–87

    PubMed  Google Scholar 

  • Logan J, Wolf AP, Shine CY, Fowler JS (1987) Kinetic modelling of receptor-ligand binding applied to positron emission tomographic studies with neuroleptic tracers. J Neurochem 48:73–83

    PubMed  Google Scholar 

  • Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ (1984) Quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Article  PubMed  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308

    Google Scholar 

  • Perlmutter JS, Raichle ME (1986) In vitro or in vivo receptor binding: where does the truth lie? Ann Neurol 19:384–385

    Article  PubMed  Google Scholar 

  • Perlmutter JS, Larson KB, Raichle ME, Markham J, Mintun M, Kilbourn R, Welch M (1986) Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab 6:154–169

    PubMed  Google Scholar 

  • Satyamurthy N, Bida GT, Barrio J, Luxen R, Mazziotta JC, Huang SC, Phelps ME (1986) No-carrier-added 3-(2′-F-18)fluoroethylspiperone, a new dopamine receptor-binding tracer for positron emission tomography. Int J Radiat Appl Inst Part B Nucl Med Biol 13:617–624

    Google Scholar 

  • Wong DF, Wagner HN Jr, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396

    Google Scholar 

  • Wong DF, Gjedde A, Ross C, Frank R, Dannals RF, Salama A, U'prichard D, Wagner HN (1988) Equilibrium binding kinetic analysis with and without blockade of SZ serotonin receptors by S2 antagonists (abstract). J Nucl Med 29(5):809

    Google Scholar 

  • Yamamura HI, Enna SJ, Kuhar MJ (eds) (1978) Neurotransmitter receptor binding. Raven, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovkar, S., Wienhard, K., Coenen, H.H. et al. Quantification of baboon cortical S2 serotonin receptors in vivo with 3-N-(2′-Fl8)fluoroethylspiperone and positron emission tomography. Eur J Nucl Med 18, 158–163 (1991). https://doi.org/10.1007/BF02262725

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262725

Key words

Navigation