Skip to main content
Log in

Genetic markers and the selection of quantitative traits in forage grasses

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Marker assisted selection is based upon the principle that if a gene (or block of genes) is linked to an easily identifiable genetic marker it may be more efficient to select in a breeding programme for the marker than for the trait itself. The recent developments in molecular marker technology has allowed several approaches to be applied to the forage grasses. The most effective methods involve the production of detailed genetic maps which can be used for determination of the location of Quantitative Trait Loci (QTLs). Application of these methods toLolium has lead to the identification of 10 QTL's affecting mainly phenological characteristics. Up to 80% of the variation in inflorescence production in the establishment year may be accounted for by one region of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arus, P. & J. Moreno-Gonzalez, 1993. Marker-assisted selection. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding: Principles and Prospects, pp. 314–331. Chapman and Hall, London.

    Google Scholar 

  • Breese, E.L. & M.D. Hayward, 1972. The genetic basis of present breeding methods in forage crops. Euphytica 21: 326–336.

    Google Scholar 

  • Charmet, G., F. Balfourier & C. Ravel, 1993. Isozyme polymorphism and geographic differentiation in a collection of French perennial ryegrass populations. Genetic Resources and Crop Evolution. In press.

  • Cornish, M.A., M.D. Hayward & M.J. Lawrence, 1980. Self-incompatibility in ryegrass iii. The joint segregation of S and PGI/2 inLolium perenne. Heredity 44: 55–62.

    Google Scholar 

  • Evans, G.M., M.D. Hayward, J.W. Forster, N.J. McAdam, M.J. Scanlon, M. Stammers & J.A.K. Will, 1991. Genome analysis and its manipulation inLolium. In: A.P.M. den Nijs & A. Elgersma (Eds.), Fodder Crops Breeding: Achievements, Novel Strategies and Biotechnology. Proceedings of the 16th Meeting of the Fodder Crops Section of Eucarpia, Wageningen, Netherlands, 1990, pp. 141–146.

  • Hayward, M.D. (Ed.), 1982. The Utilization of Genetic Resources in Fodder Crop Breeding. Proceedings Eucarpia Fodder Crops Section Meeting, Aberystwyth, p. 345.

  • Hayward, M.D. & I.B. Abdullah, 1985. Selection and stability of synthetic varieties ofLolium perenne 1. The selected character and its expression over generations of multiplication. Theor. Appl. Genet. 70: 48–51.

    Google Scholar 

  • Hayward M.D. & E.L. Breese, 1993. Population structure and variability. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding: Principles and Prospects, pp. 16–29. Chapman and Hall, London.

    Google Scholar 

  • Hayward, M.D., L.D. Gottleib & N.J. McAdam, 1978. Survival of allozyme variants in swards ofLolium perenne L. Z. Pflanzenzuchtg. 81: 228–234.

    Google Scholar 

  • Hayward, M.D. & N.J. McAdam, 1975. Isozyme Polymorphism inLolium perenne. Report of the Welsh Plant Breeding Station for 1975, pp. 12–13.

  • Hayward, M.D. & N.J. McAdam, 1977. Isozyme polymorphism as a measure of distinctiveness and stability in cultivars ofLolium perenne. Z. Pflanzenzuchtg. 79: 59–68.

    Google Scholar 

  • Hayward, M.D. & N.J. McAdam, 1988. The effect of isozyme selection on yield and flowering time inLolium perenne. Plant Breeding 101: 24–29.

    Google Scholar 

  • Hayward, M.D., M.J. Kearsey, X. Xu & J. Chave, 1989. Outcrossing amongst inbred lines ofLolium perenne. Vortr. Pflanzenzuchtg.: 15-1, 10–10.

    Google Scholar 

  • Humphreys, M.W., 1989. The controlled introgression ofFestuca arundinacea genes intoLolium multiflorum. Euphytica: 42, 105–116.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    Google Scholar 

  • Mather, K., 1973. Genetical Structure of Populations. Chapman and Hall, London.

    Google Scholar 

  • Moore, G., M.D. Gale, N. Kurata & R.B. Flavell, 1993. Molecular analysis of small grain cereal genomes; current status and prospects. Biotechnology 11: 584–589.

    Google Scholar 

  • Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Paterson, S.E. Lincoln & S.D. Tanskley, 1988. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature: 335, 721–726.

    Google Scholar 

  • Perez de la Vega, M., 1993. Biochemical characterization of populations. In: M.D. Hayward, N.O. Bosemark & I. Romagosa (Eds.), Plant Breeding: Principles and Prospects, pp. 184–200. Chapman and Hall, London.

    Google Scholar 

  • Quader, S.M.B., 1991. Genetic markers and QTL's inLolium-marker assisted selection. MSc. thesis University of Wales.

  • Rasmusson, J.M., 1935. Studies on the inheritance of quantitative characters inPisum: 1. Preliminary note on the genetics of flowering. Hereditas 20: 161–180.

    Google Scholar 

  • Rees, H. & K. Ahmed, 1963. Chiasma frequencies inLolium populations. Evolution 17: 575–579.

    Google Scholar 

  • Sax, K., 1923. The association of size differences with seed coat pattern and pigmentation inPhaseolus vulgaris. Genetics 8: 552–560.

    Google Scholar 

  • Soller, M. & J.S. Beckmann, 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Google Scholar 

  • Stammers, M., 1992. Molecular mapping and biosystematics of theFestucae. PhD Thesis, University of Wales.

  • Stuber, C.W., 1989. Marker based selection for quantitative traits. Vortr. Pflanzenzuchtg. 16: 31–49.

    Google Scholar 

  • Stuber, C.W., R.H. Moll, M.M. Goodman, H.E. Schaffer & B.S. Weir, 1980. Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L). Genetics 95: 225–236.

    Google Scholar 

  • Stuber, C.W., M.D. Edwards & J.F. Wendel, 1987. Molecular marker facilitated investigations of quantitative loci in maize. ii. Factors influencing yield and its component traits. Crop Sci. 27: 639–648.

    Google Scholar 

  • Tanskley, S.D. & C.M. Rick, 1980. Isozymic gene linkage map of the tomato; applications in genetics and breeding. Theor. Appl. Genet. 57: 161–170.

    Google Scholar 

  • Ustun, A., 1992. Identification of QTL's inLolium. MSc. thesis, University of Wales.

  • Will, J., 1991. Genome analysis inLolium. PhD. thesis, University of Wales.

  • Wilson, D. & J.G. Jones, 1981. Effects of selection for dark respiration rate of mature leaves on crop yields ofLolium perenne cv. S23. Ann. Bot. 49: 313–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, M.D., Mcadam, N.J., Jones, J.G. et al. Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77, 269–275 (1994). https://doi.org/10.1007/BF02262641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262641

Key words

Navigation