Skip to main content
Log in

Brain and cerebrospinal fluid cholinesterases in Alzheimer's disease, Parkinson's disease and aging. A critical review of clinical and experimental studies

  • Full Papers
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

Acetylcholinesterase (AChE), an enzyme responsible for the breakdown of acetylcholine, is found both in cholinergic and non-cholinergic neurons in the central nervous system. In addition to its role in the catabolism of acetylcholine, AChE have other functions in brain, e.g. in the processing of peptides and proteins, and in the modulation of dopaminergic neurons in the brain stem. Several clinical and experimental studies have investigated AChE in brain and cerebrospinal fluid (CSF) in aging and dementia. The results suggest that brain AChE and its molecular forms show interesting changes in dementia and aging. However, CSF-AChE activity is not a very reliable or sensitive marker of the integrity and function of cholinergic neurons in the basal forebrain complex. Additional work is needed to clarify the role of AChE abnormality in the formation of pathology changes in patients with Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard ME, Smith AD (1987) Spontaneous and carbachol-evoked in vivo secretion of acetylcholinesterase from the hippocampus of the rat. Neurochem Int 11: 397–406

    Google Scholar 

  • Appleyard ME, Smith AD, Wilcock GK, Esiri MM (1983) Decreased CSF acetylcholinesterase activity in Alzheimer's disease. Lancet ii: 452

    Google Scholar 

  • Appleyard ME, Smith AD, Berman P, Wilcock GK, Esiri MM, Neary D, Bowen DM (1987) Cholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Brain 110: 1309–1322

    Google Scholar 

  • Appleyard ME, Vercher J-L, Greenfield SA (1988) Release of acetylcholinesterase from the guinea-pig cerebellum in vivo. Neuroscience 25: 133–138

    Google Scholar 

  • Arendt T, Bigl V, Walther F, Sonntag M (1984) Decreased ratio of CSF acetylcholinesterase to butyrylcholinesterase activity in Alzheimer's disease. Lancet i: 173

    Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease. Neuroscience 14: 1–14

    Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH, Tomlinson BE, Blessed G, Fairbarn A (1983) Molecular forms of acetylcholinesterase in senile dementia of Alzheimer type: selective loss of the intermediate (10S) form. Neurosci Lett 40: 199–204

    Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Candy JM and Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47: 263–277

    Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Perry RH (1987a) Molecular forms of acetylcholinesterase and butyrylcholinesterase in human plasma and cerebrospinal fluid. J Neurochem 48: 1845–1850

    Google Scholar 

  • Atack JR, Perry EK, Bonham JR, Candy JM (1987b) Loss and recovery of acetylcholinesterase molecular forms in the fornix-lesioned rat hippocampus. Neurosci Lett 79: 179–184

    Google Scholar 

  • Atack JR, May C, Kaye JA, Kay AD, Rapoport SI (1988) Cerebrospinal fluid cholinesterases in aging and in dementia of the Alzheimer type. Ann Neurol 23: 161–167

    Google Scholar 

  • Aquilonius S-M, Eckernas S-Å (1975) Choline acetyltransferase in human cerebrospinal fluid: non-enzymatically and enzymatically catalyzed acetylcholine systhesis. J Neurochem 27: 317–318

    Google Scholar 

  • Barth F, Ghandour MS (1983) Cellular localization of butyrylcholinesterase in adult rat cerebellum determined by immunofluorescence. Neurosci Lett 39: 149–153

    Google Scholar 

  • Bareggi SR, Giacobini E (1978) Acetylcholinesterase activity in ventricular and cisternal CSF of dogs effects of chlorpromazine. J Neurosci Res 3: 335–339

    Google Scholar 

  • Bartus RT, Dean RL (1987) Animal models for age-related memory disturbances. In: Coyle JT (ed) Animal models of dementia. Alan R Liss, New York, pp 69–79

    Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417

    Google Scholar 

  • Beal MF, Martin JB (1986) Neuropeptides in neurological disease. Ann Neurol 20: 547–565

    Google Scholar 

  • Biegon A, Greenberger V, Segal M (1986) Quantitative histochemistry of brain acetylcholinesterase in learning rate in the aged rat. Neurobiol Aging 7: 215–217

    Google Scholar 

  • Bisso GM, Diana G, Meneguz A, Fortuna S, Michalek H (1987) Do basal forebrain lesions in the rat reproduce a selective loss of heavy (11S) molecular form of cortical acetylcholinesterase characteristic for Alzheimer's disease? In: Structural-functional properties of the basal forebrain cholinergic system. ESN-IBRO Satellite Symposium, Leipzig, GDR (Abstracts, p 8)

  • Bowen DM, Smith CP, White P, Davinson AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496

    Google Scholar 

  • Bowen DM, Smith CB, White P, Goodhardt MJ, Spillane JA, Flack RHA, Davison AN (1977) Chemical pathology of the organic dementias. I. Validity of biochemical measurements in human post-mortem brain specimens. Brain 100: 397–426

    Google Scholar 

  • Brimijoin S (1983) Molecular forms of acetylcholinesterase in brain, nerve, and muscle: nature, localization, and dynamics. Prog Neurobiol 21: 291–322

    Google Scholar 

  • Brockman SK, Usiak MF, Younkin SG (1986) Assembly of monomeric acetylcholinesterase into tetrameric and asymmetric forms. J Biol Chem 261: 1201–1207

    Google Scholar 

  • Carson KA, Geula C, Mesulam M-M (1991) Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res 540: 204–208

    Google Scholar 

  • Catalan RE, Martinez AM, Aragones MD, Miguel BG, Robles A, Codoy JE (1984) Effects of substance P on acetylcholinesterase activity. Biochem Int 8: 203–208

    Google Scholar 

  • Chubb IW, Smith AD (1975) Release of acetylcholinesterase into the perfusate from the ox adrenal gland. Proc Roy Soc Lond B 191: 263–269

    Google Scholar 

  • Chubb IW, Millar TJ (1984) Is intracellular acetylcholinesterase involved in the processing of peptide neurotransmitters? Clin Exp Hypertens A6 (1 & 2): 79–89

    Google Scholar 

  • Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19: 1–28

    Google Scholar 

  • Danielsson E, Eckernäs S-Å, Westlind-Danielsson A, Nordström Ö, Bartfai T, Gottfries C-G, Wallin A (1988) VIP-sensitive adenylate cyclase, guanylate cyclase, muscarinic receptors, choline acetyltransferase and acetylcholinesterase in brain tissue affected by Alzheimer's disease/senile dementia of the Alzheimer type. Neurobiol Aging 9: 152–162

    Google Scholar 

  • Davies P (1979) Neurotransmitter-related enzymes in senile dementia of the Alzheimer type. Brain Res 171: 319–326

    Google Scholar 

  • Davies P, Maloney AJ (1976) Selective loss of cholinergic neurons in Alzheimer's disease. Lancet ii: 1403

    Google Scholar 

  • Decker MW (1987) The effects of aging on hippocampal and cortical projections of the forbrain cholinergic system. Brain Res Rev 12: 423–438

    Google Scholar 

  • DeKosky ST, Hackney C, Scheff SW (1985) Acetylcholine (ACh) synthesis and endogenous choline acetyltransferase (CAT) inhibitory activity in human CSF. Neurology 35 [Suppl 1]: 258

    Google Scholar 

  • Delfs JR, Zhu C-H, Dichter MA (1984) Coexistence of acetylcholinesterase and somatostatin-immunoreactivity in neurons cultured from rat cerebrum. Science 223: 61–63

    Google Scholar 

  • Deutsch SI, Mohs RC, Levy MI (1983) Acetylcholinesterase activity in CSF in schizophrenia, depression, Alzheimer disease, and normals. Biol Psychiatry 18: 1363–1370

    Google Scholar 

  • Direnfeld LK, Albert ML, Volicer L, Langlais PJ, Marquis J, Kaplan E (1984) Parkinson's disease. The possible relationship of laterality to dementia and neurochemical findings. Arch Neurol 41: 935–941

    Google Scholar 

  • Drachman DA, Levitt J (1974) Human memory and the cholinergic system: a relationship with aging. Arch Neurol 30: 113–121

    Google Scholar 

  • Dubois B, Ruberg M, Javoy-Agid F, Ploska A, Agid Y (1983) A subcortico-cortical cholinergic system is affected in Parkinson's disease. Brain Res 288: 213–218

    Google Scholar 

  • Elble R, Giacobini E, Scarsella GF (1987) Cholinesterases in cerebrospinal fluid. A longitudinal study in Alzheimer's disease. Arch Neurol 44: 403–407

    Google Scholar 

  • Elble R, Giacobini E, Higgins C (1989) Choline levels are increased in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 10: 45–50

    Google Scholar 

  • Fischer W, Gage FH, Björklund A (1989) Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur J Neurosci 1: 34–45

    Google Scholar 

  • Fishman EB, Siek GC, MacCallum RD, Bird ED, Volicer L, Marquis JK (1986) Distribution of the molecular forms of acetylcholinesterase in human brain: alterations in dementia of the Alzheimer type. Ann Neurol 19: 246–252

    Google Scholar 

  • Gennari K, Brodbeck U (1985) Molecular forms of acetylcholinesterase from human caudate nucleus: comparisons of salt-soluble and detergent-soluble tetrameric enzyme species. J Neurochem 44: 697–704

    Google Scholar 

  • Geula C, Mesulam M-M (1989a) Special properties of cholinesterases in the cerebral cortex of Alzheimer's disease. Brain Res 498: 185–189

    Google Scholar 

  • Geula C, Mesulam M-M (1989b) Cortical cholinergic fibers in aging and Alzheimer's disease: a morphometric study. Neuroscience 33: 469–481

    Google Scholar 

  • Giacobini E (1990) The cholinergic system in Alzheimer's disease. In: Aquillonius S-M, Gillberg P-G (eds) Cholinergic neurotransmission: functional and clinical aspects. Prog Brain Res 84: 321–332

  • Giacobini E, Becker R, Elble R, Mattio T, McIhany M (1986) Acetylcholine metabolism in brain. Is it reflected by CSF changes? In: Fischer A (ed) Alzheimer and Parkinson's diseases. Plenum Press, New York, pp 309–316

    Google Scholar 

  • Gomez S, Davious P, Faivre-Bauman A, Valade D, Jeannin C, Rondot P, Puymirat J (1986) Acetylcholinesterase activity and somatostatin-like immunoreactivity in lumbar cerebrospinal fluid of demented patients. In: Fisher A (ed) Alzheimer and Parkinson's diseases. Plenum Press, New York, pp 317–322

    Google Scholar 

  • Grassi J, Vigny M, Massoulie J (1982) Molecular forms of acetylcholinesterase in bovine caudate nucleus and superior cervical ganglion: solubility properties and hydrophobic character. J Neurochem 38: 457–469

    Google Scholar 

  • Greenfield SA (1984) Acetylcholinesterase may have novel functions in the brain. Trends Neurosci 7: 364–368

    Google Scholar 

  • Greenfield SA (1991) A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal secretion to the generation of movement. Cell Mol Neurobiol 11: 55–77

    Google Scholar 

  • Greenfield SA, Smith AD (1979) The influence of electrical stimulation of certain brain areas on the concentration of acetylcholinesterase on rabbit cerebrospinal fluid. Brain Res 177: 445–459

    Google Scholar 

  • Greenfield SA, Chubb IW, Smith AD (1979) The effect of chloropromazine on the concentration of acetylcholinesterase in the cerebrospinal fluid of rabbits. Neuropharmacology 18: 127–132

    Google Scholar 

  • Greenfield SA, Appleyard ME, Bloomfield MR (1986) 6-Hydroxydopamine-induced turning behaviour in the rat: the significance of acetylcholinesterase in cerebrospinal fluid. Behav Brain Res 21: 47–54

    Google Scholar 

  • Hammond P, Brimjoin S (1988) Acetylcholinesterase in Huntington's and Alzheimer's diseases: simultaneous enzyme assay and immunoassay of multiple brain regions. J Neurochem 50: 1111–1116

    Google Scholar 

  • Hartikainen P, Reinikainen KJ, Sirviö J, Soikkeli R, Soininen H, Riekkinen PJ (1990) Neurotransmitter markers in the cerebrospinal fluid of normal aging subjects. J Neural Transm [GenSect] 84: 103–117

    Google Scholar 

  • Hartikainen P, Reinikainen KJ, Soininen H, Sirviö J, Soikkeli R, Riekkinen PJ (1992) Neurochemical markers in the cerebrospinal fluid of patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and normal controls. J Neurol Transm [P-D Sect] 4: 53–68

    Google Scholar 

  • Henderson Z (1986) Is there a link between choline acetyltransferase-containing neurones and butyrylcholinesterase in rat cerebral cortex? Trends Neurosci 9: 20

    Google Scholar 

  • Henderson Z (1989) Acetylcholinesterase on the dendrites of central cholinergic neurons: an electron microscopical study in the ferret. Neuroscience 28: 95–108

    Google Scholar 

  • Henke H, Lang W (1983) Cholinergic enzymes in neocortex, hippocampus, and basal forebrain of non-neurological and senile dementia of Alzheimer-type patients. Brain Res 267: 281–291

    Google Scholar 

  • Hornykiewz O, Kish SJ (1986) Biochemical pathophysiology of Parkinson's disease. Adv Neurol 45: 19–34

    Google Scholar 

  • Huff FJ, Maire JC, Growdon JH, Corkin SH, Wurtman RJ (1985) CSF cholinesterase in Alzheimer's disease. Neurology 35: 218

    Google Scholar 

  • Huff FJ, Maire JC, Growdon JH, Corkin S, Wurtman RJ (1986) Cholinesterases in cerebrospinal fluid correlation with clinical measures in Alzheimer's disease. J Neurol Sci 72: 121–129

    Google Scholar 

  • Huff FJ, Reiter CT, Rosen J, Peters J, van Kammen DP (1988) No effect of haloperidol on cerebrospinal fluid acetylcholinesterase in patients with schizophrenia. Biol Psychiatry 24: 701–704

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR (1987) Alzheimer's disease: glutamate depletion in the hippocampal perforant pathway zone. Ann Neurol 22: 37–40

    Google Scholar 

  • Inestrosa NC, Roberts WL, Marshall TL, Rosenberry TL (1987) Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterase in other tissues. J Biol Chem 262: 4441–4444

    Google Scholar 

  • Inestrosa NC, Perelman A (1989) Distribution and anchoring of molecular forms of acetylcholinesterase. Trends Pharmacol Sci 10: 325–329

    Google Scholar 

  • Johnson D, Domino EF (1971) Cholinergic enzymatic activity of cerebrospinal fluid of patients with various neurologic diseases. Clin Chim Acta 35: 421–428

    Google Scholar 

  • Jolkkonen JT, Soininen HS, Riekkinen PJ (1985) The effect of ACTH4-9 analog (Org 2766) on some cerebrospinal fluid parameters in patients with Alzheimer's disease. Life Sci 37: 585–590

    Google Scholar 

  • Jolkkonen J, Soininen H, Halonen T, Ylinen A, Laulumaa V, Laakso M, Riekkinen P (1986) Somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with Parkinson's disease and its relation to dementia. J Neurol Neurosurg Psychiatry 49: 1374–1377

    Google Scholar 

  • Joo F, Csillik B (1966) Topographic correlation between the hematoencephalic barrier and the cholinesterase activity in brain capillaries. Exp Brain Res 1: 147–151

    Google Scholar 

  • Kasa P (1986) The cholinergic systems in brain and spinal cord. Prog Neurobiol 26: 211–272

    Google Scholar 

  • Katzman R (1986) Alzheimer's disease. N Engl J Med 314: 964–973

    Google Scholar 

  • Koelle GB, Massoulie J, Eugene D, Melone MAB, Boulla G (1987) Distributions of molecular forms of acetylcholinesterase and butyrylcholinesterase in nervous tissue of the cat. Proc Natl Acad Sci (USA) 84: 7749–7752

    Google Scholar 

  • Koponen H, Sirviö J, Reinikainen KJ, Riekiinen PJ (1991) A longitudinal study of cerebrospinal fluid acetylcholinesterase in delirium: changes at the acute stage and at one year follow-up. Psychiatry Res 38: 135–142

    Google Scholar 

  • Kosik KS (1991) Alzheimer plaques and tangles: advances on both fronts. Trends Neurosci 14: 218–219

    Google Scholar 

  • Kuhar MJ (1976) The anatomy of cholinergic neurons. In: Goldberg AM, Hanin I (eds) Biology of cholinergic functions. Raven Press, New York, pp 3–27

    Google Scholar 

  • Kumar V, Giacobini E (1988) Cerebrospinal fluid choline, and acetylcholinesterase activity in familial vs. non-familial Alzheimer's disease patients. Arch Gerontol Geriatr 7: 111–117

    Google Scholar 

  • Kumar V, Giacobini E, Markwell S (1989) CSF choline and acetylcholinesterase in earlyonset vs. late-onset Alzheimer's disease patients. Acta Neurol Scand 80: 461–466

    Google Scholar 

  • Lal S, Wood PL, Kiely ME, Etienne P Gauthier S, Stratford J, Ford RM, Dastoor D, Nair NPV (1984) CSF acetylcholinesterase in dementia and in sequential samples of lumbar CSF. Neurobiol Aging 5: 269–274

    Google Scholar 

  • Low MG, Futerman AH, Ackermann KE, Sherman WR, Silman I (1987) Removal of covalently bound inositol from torpedo acetylcholinesterase and mammalian alkaline phosphatases by deamination which nitrous acid. Biochem J 241: 615–619

    Google Scholar 

  • Luine VN, Renner KJ, Heady S, Jones KJ (1986) Age and sex-dependent decreases in ChAT in basal forebrain nuclei. Neurobiol Aging 7: 193–198

    Google Scholar 

  • MacDonald E, Sirviö J (1992) Neurotoxins as tools in lesioning experiments. In: Harvey AL (ed) Neuroscience perspective series — natural and synthetic neurotoxins. Academic Press, London (in press)

    Google Scholar 

  • Mackay AVP, Davies P, Dewar AJ, Yates CM (1978) Regional distribution of enzymes associated with neurotransmission by monoamines, acetylcholine and GABA in the human brain. J Neurochem 30: 827–829

    Google Scholar 

  • Main AR (1976) Structure and inhibitors of cholinesterase. In: Goldberg AM, Hanin I (eds) Biology of cholinergic function. Raven Press, New York, pp 269–353

    Google Scholar 

  • Manyam BV, Giacobini E, Colliver JA (1990) Cerebrospinal fluid choline levels are decreased in Parksinon's disease. Ann Neurol 27: 683–685

    Google Scholar 

  • Marquis JK, Volicer L, Mark KA, Direnfeld LK, Freedman M (1985) Cholinesterase activity in plasma, erythrocytes, and cerebrospinal fluid of patients with dementia of the Alzheimer type. Biol Psychiatry 20: 605–610

    Google Scholar 

  • Massoulie J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5: 57–106

    Google Scholar 

  • May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40: 500–503

    Google Scholar 

  • Mesulam M-M, Moran MA (1987) Cholinesterases within neurofibrillary tangles related to age and Alzheimer's disease. Ann Neurol 22: 223–228

    Google Scholar 

  • Mesulam M-M, Geula C (1988) Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: absence at birth, development during the life span, and dissolution in Alzheimer's disease. Ann Neurol 24: 765–773

    Google Scholar 

  • Mesulam M-M, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10: 1185–1201

    Google Scholar 

  • Michalek H, Fortuna S, Pintor A (1989a) Age-related differences in brain choline acetyltransferase, cholinesterases and muscarinic receptor sites in two strains of rats. Neurobiol Aging 10: 143–148

    Google Scholar 

  • Michalek H, Meneguz A, Volpe MT, Bisso GM (1989b) Acetylcholinesterase molecular forms as markers of rat brain physiological aging. Abstracts of the 12th Annual Meeting of the European Neuroscience Association. Eur J Neurosci [Suppl 2]: 140

    Google Scholar 

  • Mohan C, Radha E (1978) Age dependent kinetic changes in the activities of central cholinergic enzymes. Exp Gerontol 13: 349–356

    Google Scholar 

  • Muller F, Dumez Y, Massoulie J (1985) Molecular forms and solubility of acetylcholinesterase during the embryonic development of rat and human brain. Brain Res 331: 295–302

    Google Scholar 

  • Nakamura S, Vincent SR (1985) Acetylcholinesterase and somatostatin immunoreactivity coexist in human neocortex. Neurosci Lett 61: 183–187

    Google Scholar 

  • Nakano S, Kato T, Nakamura S, Kameyama M (1986) Acetylcholinesterase activity in cerebrospinal fluid of patients with Alzheimer's disease and senile dementia. J Neurol Sci 75: 213–223

    Google Scholar 

  • Navaratnam DS, Priddle JD, McDonald B, Esiri MM, Robinson JR, Smith AD (1991) Anomalous molecular form of acetylcholinesterase in cerebrospinal fluid in histologically diagnosed Alzheimer's disease. Lancet 337: 447–450

    Google Scholar 

  • Page KJ, Everitt BJ, Robbins TW, Marston HM, Wilkinson LS (1991) Dissociable effects on spatial maze and passive avoidance acquisition and retention following AMPA-and ibotenic acid-induced excitotoxic lesions of the basal forebrain in rats: differential dependence on cholinergic neuronal loss. Neuroscience 43: 457–472

    Google Scholar 

  • Payner TD, Drake RL, Saker DM, Shipley MT (1987) Determination of molecular forms of brain acetylcholinesterase: technical considerations. Brain Res Bull 19: 287–290

    Google Scholar 

  • Pearlson GD, Tune LE (1986) Cerebral ventricular size and cerebrospinal fluid acetylcholinesterase levels in senile dementia of the Alzheimer type. Psychiatry Res 17: 23–29

    Google Scholar 

  • Perry EK (1980) The cholinergic system in old age and Alzheimer's disease. Age Ageing 9: 1–8

    Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis—ten years on. Br Med Bull 42: 63–69

    Google Scholar 

  • Perry EK, Perry RH (1981) Brain biochemistry in dementia of Alzheimer-type. In: Rose FC (ed) Metabolic disorders of the nervous system. Pitman, London, pp 382–417

    Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet i: 289

    Google Scholar 

  • Perry EK, Atack JR, Perry RH, Hardy JA, Dodd PR, Edwardson JA, Blessed G, Tomlinson BE, Fairbarn AF (1984) Intralaminar neurochemical distributions in human midtemporal cortex: comparison between Alzheimer's disease and the normal. J Neurochem 42: 1402–1410

    Google Scholar 

  • Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA, Blessed G, Fairbarn A, Tomlinson BE, Perry RH (1985) Cholinergic correlates of cognitive impairment in Parkinson's disease: comparisons with Alzheimer's disease. J Neurol Neurosurg Psychiatry 48: 413–421

    Google Scholar 

  • Pope A, Hess HH, Lewin E (1965) Microchemical pathology of the cerebral cortex in presenile dementia. Trans Am Neurol Assoc 89: 15–16

    Google Scholar 

  • Price DL (1986) New perspectives on Alzheimer's disease. Ann Rev Neurosci 9: 489–512

    Google Scholar 

  • Quinn NP, Rossor MN, Marsden CD (1986) Dementia and Parkinson's disease —pathological and neurochemical considerations. Br Med Bull 42: 86–90

    Google Scholar 

  • Rakonczay Z (1988) Cholinesterase and its molecular forms in pathological states. Prog Neurobiol 31: 311–330

    Google Scholar 

  • Rakonczay Z, Kása P, Sirviö J, Riekkinen PJ (1989) Activity and molecular forms of cerebrospinal fluid acetylcholinesterase in normal aging Alzheimer's disease and amyotrophic lateral sclerosis. Eur J Neurosci [Suppl 2]: 238

    Google Scholar 

  • Reinikainen K (1988) Neurotransmitters in Alzheimer's disease. Series reports, no 9, Department of Neurology, University of Kuopio

  • Reinikainen KJ, Riekkinen PJ, Paljärvi L, Soininen H, Helkala E-L, Jolkkonen J, Laakso M (1988) Cholinergic deficit in Alzheimer's disease: a study based on CSF and autopsy data. Neurochem Res 13: 135–146

    Google Scholar 

  • Reinikainen KJ, Soininen H, Riekkinen PJ (1990) Neurotransmitter changes in Alzheimer's disease: implications to diagnostics and therapy. J Neurosci Res 27: 576–586

    Google Scholar 

  • Riekkinen PJ, Soininen H, Sirviö J, Reinikainen K, Helkala E-L, Paljärvi L (1987) Dementia without cholinergic deficit. Gerontology 33: 268–272

    Google Scholar 

  • Riekkinen P jr, Miettinen R, Rummukainen J, Pitkänen A, Paljärvi L, Riekkinen P (1990a) The effects of lesioning the basal forebrain cholinergic neurones on CSF AChE activity. Neurosci Res Commun 6: 37–43

    Google Scholar 

  • Riekkinen P Jr, Sirviö J, Riekkinen P (1990b) Similar memory impairments found in medial septal-vertical diagonal band of Broca and nucleus basalis lesioned rats: are memory defects induced by nucleus basalis lesions related to the degree of non-specific subcortical cell loss? Behav Brain Res 37: 81–88

    Google Scholar 

  • Riekkinen PJ, Buzsaki G, Riekkinen P Jr, Soininen H, Partanen J (1991) The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol 78: 89–96

    Google Scholar 

  • Rinne UK, Riekkinen P, Sonninen V, Laaksonen H (1973) Brain acetylcholinesterase in Parkinson's disease. Acta Neurol Scand 49: 215–226

    Google Scholar 

  • Rinne UK, Rinne JO, Rinne JK, Laakso K (1987) Chemical neurotransmission in the parkinsonian brain. Med Biol 65: 75–81

    Google Scholar 

  • Robertson RT, Lieu CL, Lee K, Gorenstein C (1986) Distribution of “non-specific” cholinesterase-containing neurons in the dorsal thalamus of the rat. Brain Res 368: 116–124

    Google Scholar 

  • Rosenberry Tl, Chen YT, Bock E (1974) Structure of 11S acetylcholinesterase. Subunit composition. Biochemistry 13: 3068–3079

    Google Scholar 

  • Ruberg M, Rieger F, Villageois A, Bonnet AM, Agid Y (1986) Acetylcholinesterase and butyrylcholinesterase in frontal cortex and cerebrospinal fluid of demented and nondemented patients with Parkinson's disease. Brain Res 362: 83–91

    Google Scholar 

  • Ruberg M, Villageois A, Bonnet A-M, Pillon B, Rieger F, Agid Y (1987) Acetylcholinesterase and butyrylcholinesterase activity in the cerebrospinal fluid of patients with neurodegenerative diseases involving cholinergic systems. J Neurol Neurosurg Psychiatry 50: 538–543

    Google Scholar 

  • Scarsella G, Toschi G, Bareggi SR, Giacobini E (1979) Molecular forms of cholinesterases in cerebrospinal fluid, blood plasma, and brain tissue of the beagle dog. J Neurosci Res 4: 19–24

    Google Scholar 

  • Schegg KM, Gillespie RP, Peacock JH (1990) Changes in membrane-bound and soluble molecular forms of acetylcholinesterase in mouse hippocampus after cholinergic denervation. Neurosci Lett 118: 197–200

    Google Scholar 

  • Schätz CR, Geula C, Mesulam M-M (1990) Competetive substrate inhibition in the histochemistry of cholinesterase activity in Alzheimer's disease. Neurosci Lett 117: 56–61

    Google Scholar 

  • Shimon M, Egozi Y, Kloog Y, Sokolovsky M, Cohen S (1989) Vascular cholinesterase and choline uptake in isolation of rat forebrain microvessels. A possible link. J Neurochem 53: 561–565

    Google Scholar 

  • Shute CCD, Lewis PR (1963) Cholinesterase-containing systems of the brain of the rat. Nature 199: 1160–1164

    Google Scholar 

  • Silver A (1974) The biology of cholinesterases. North-Holland/Elsevier, Amsterdam

    Google Scholar 

  • Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40: 503–509

    Google Scholar 

  • Sirviö J, Soininen HS, Kutvonen R, Hyttinen J-M, Helkala E-L, Riekkinen PJ (1987) Acetyl- and butyrylcholinesterase activity in the cerebrospinal fluid of patients with Parkinson's disease. J Neurol Sci 81: 273–279

    Google Scholar 

  • Sirviö J, Valjakka A, Jolkkonen J, Hervonen A, Riekkinen PJ (1988a) Cholinergic enzyme activities and muscarinic binding in the cerebral cortex of rats of different age and sex. Comp Biochem Physiol 90C: 245–248

    Google Scholar 

  • Sirviö J, Hervonen A, Valjakka A, Riekkinen PJ (1988b) Pre- and postsynaptic markers of cholinergic neurons in the cerebral cortex of rats of different ages. Exp Gerontol 23: 473–479

    Google Scholar 

  • Sirviö J, Kutvonen R, Soininen H, Hartikainen P, Riekkinen PJ (1989a) Cholinesterases in the cerebrospinal fluid, plasma, and erythrocytes of patients with Alzheimer's disease. J Neural Transm 75: 119–127

    Google Scholar 

  • Sirviö J, Rinne JO, Valjakka A, Rinne UK, Riekkinen PJ, Paljärvi L (1989 b) Different forms of brain acetylcholinesterase and muscarinic binding in Parkinson's disease. J Neurol Sci 90: 23–32

    Google Scholar 

  • Sirviö J, Pitkänen A, Pääkkönen A, Partanen J, Riekkinen PJ (1989 c) Brain cholinergic enzymes and cortical EEG activity in young and old rats. Comp Biochem Physiol 94C: 277–283

    Google Scholar 

  • Sirviö J, Riekkinen PJ, Hervonen A (1989d) Age-dependence of the solubility fractions of acetylcholinesterase in the cerebral cortex and cerebellum of the rat. Neurosci Lett 96: 218–222

    Google Scholar 

  • Sirviö J, Rakonczay Z, Hartikainen P, Kasa P, Riekkinen PJ (1991) The molecular forms of acetylcholinesterase in cerebrospinal fluid of normal subjects — effect of aging. J Neural Transm [GenSect] 86: 147–150

    Google Scholar 

  • Small DH (1990) Non-cholinergic actions of acetylcholinesterases: proteases regulating cell growth and development? TiBS 15: 213–216

    Google Scholar 

  • Small DH, Ismael Z, Chubb IW (1987) Acetylcholinesterase exhibits trypsin-like and metalloexopeptidase-like activity in cleaving a model peptide. Neuroscience 21: 991–995

    Google Scholar 

  • Small DH, Moir RD, Fuller SJ, Michaelson S, Bush AI, Li Q-X, Milward E, Hilbich C, Weidemann A, Beyreuther K, Masters CL (1991) A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer's disease. Biochemistry 30: 10795–10799

    Google Scholar 

  • Smith AD, Cuello AC (1984) Alzheimer's disease and acetylcholinesterase-containing neurons. Lancet i: 513

    Google Scholar 

  • Smith G (1988) Animal models of Alzheimer's disease: experimental cholinergic denervation. Brain Res Rev 13: 103–118

    Google Scholar 

  • Soininen H, Halonen T, Riekkinen PJ (1981) Acetylcholinesterase activities in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 217–224

    Google Scholar 

  • Soininen HS, Jolkkonen JT, Reinikainen KJ, Halonen T, Riekkinen PJ (1984a) Reduced cholinesterase activity and somatostatin-like immunoreactivity in the cerebrospinal fluid of patients with dementia of Alzheimer type. J Neurol Sci 63: 167–172

    Google Scholar 

  • Soininen H, Pitkänen A, Halonen T, Riekkinen PJ (1984b) Dopamine-β-hydroxylase and acetylcholinesterase activities in cerebrospinal fluid in Alzheimer's disease. Acta Neurol Scand 69: 29–34

    Google Scholar 

  • Sung SC, Ruff BA (1983) Molecular forms of sucrose extractable and particulate acetylcholinesterase in the developing and adult rat brain. Neurochem Res 8: 303–311

    Google Scholar 

  • Szilágyi AK, Németh A, Martini E, Lendvai B, Venter V (1987) Serum and CSF cholinesterase activity in various kinds of dementia. Eur Arch Psychiatr Neurol Sci 236: 309–311

    Google Scholar 

  • Taylor P, Schumacher M, Maulet Y, Newton M (1986) A molecular perspective on the polymorphism of acetylcholinesterase. Trends Pharmacol Sci 7: 321–323

    Google Scholar 

  • Thal LJ (1985) Changes in cerebrospinal fluid associated with dementia. Ann NY Acad Sci 444: 235–241

    Google Scholar 

  • Tsim KWK, Randall WR, Barnard EA (1988) An asymmetric form of muscle acetylcholinesterase contains three subunit types and two enzymic activities in one molecule. Proc Natl Acad Sci (USA) 85: 1262–1266

    Google Scholar 

  • Tune L, Gucker S, Folstein M, Oshida L, Coyle JT (1985) Cerebrospinal fluid acetylcholinesterase activity in senile dementia of the Alzheimer type. Ann Neurol 17: 46–48

    Google Scholar 

  • Urakami K, Adachi Y, Awaki E, Takahashi K (1989) Characterization of the course of senile dementia of the Alzheimer type using cerebrospinal fluid levels of acetylcholinesterase and somatostatin. Acta Neurol Scand 80: 232–237

    Google Scholar 

  • Wester P, Eriksson S, Forsell Å, Puu G, Adolfsson R (1988) Monoamine metabolite concentrations and cholinesterase activities in cerebrospinal fluid of progressive dementia patients: relation to clinical parameters. Acta Neurol Scand 77: 12–21

    Google Scholar 

  • Weston J, Greenfield SA (1986) Release of acetylcholinesterase in the rat nigrostriatal pathway: relation to receptor activation and firing rate. Neuroscience 17: 1079–1088

    Google Scholar 

  • Whitehouse PJ, Struble RG, Hedren JC, Clark AW, Price DL (1985) Alzheimer's disease and related dementia: selective involvement of specific neuronal systems. Crit Rev Clin Neurobiol 1: 319–339

    Google Scholar 

  • Wood PL, Etienne P, Lal S, Gauthier S, Cajal S, Nair NPV (1982) Reduced lumbar CSF somatostatin levels in Alzheimer's disease. Life Sci 31: 2073–2079

    Google Scholar 

  • Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, Ritchie JM, Urquhart A (1983) Catecholamines and cholinergic enzymes in pre-senile and senile Alzheimer-type dementia and Down's syndrome. Brain Res 280: 119–126

    Google Scholar 

  • Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF, Younkin LH (1986) Molecular forms of acetylcholinesterases in Alzheimer's disease. Fed Proc 45: 2982–2988

    Google Scholar 

  • Zigmond MJ, Stricker EM, Berger TW (1987) Parkinsonism: Insights from animal models utilizing neurotoxic agents. In: Coyle JT (ed) Animal models of dementia. Alan R Liss, New York

    Google Scholar 

  • Zubenko GS, Marquis JK, Volicer L, Direnfeld LK, Langlais PJ, Nixon RA (1986) Cerebrospinal fluid levels of angiotensin-converting enzyme, acetylcholinesterase, and dopamine metabolites in dementia associated with Alzheimer's disease and Parkinson's disease: a correlative study. Biol Psychiatry 21: 1365–1381

    Google Scholar 

  • Zubenko GS, Moossy J, Hanin I, Martinez J, Rao GR, Kopp U (1988) Bilateral symmetry of cholinergic deficits in Alzheimer's disease. Arch Neurol 45: 255–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirviö, J., Riekkinen, P.J. Brain and cerebrospinal fluid cholinesterases in Alzheimer's disease, Parkinson's disease and aging. A critical review of clinical and experimental studies. J Neural Transm Gen Sect 4, 337–358 (1992). https://doi.org/10.1007/BF02260081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260081

Keywords

Navigation