Skip to main content
Log in

Oxidative-stress-related changes in the livers of bile-duct-ligated rats

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

The role of reactive oxygen species in liver fibrogenesis is not yet clarified. The aim of this study was to investigate oxidative-stress-related changes in cirrhotic rats. Cirrhosis was induced by bile duct ligation in Sprague-Dawley rats. Plasma malondialdehyde (MDA), hepatic 8-hydroxy-2′-deoxyguanosine (8-OHdG), hepatic mitochondrial respiratory functions and gene transcripts were measured at 2 and 4 weeks after surgery in bileduct-ligated (BDL) and sham-operated-operated rats. The results showed progressive increases in the levels of plasma MDA, hepatic 8-OHdG and procollagen I and III mRNA expression, and progressive impairment of hepatic mitochondrial respiratory function in BDL rats at 2 and 4 weeks after ligation compared with sham-operated rats. Moreover, at 4 weeks after ligation, BDL rats exhibited reduced plasma glutathione and vitamin E levels, impaired hepatic mitochondrial electron transport enzyme activities and oxidative phosphorylation function. In addition, hepatic mRNA expression of transforming growth factor-β1 was increased. Hepatomegaly, abnormal plasma alanine transaminase and aspartate transaminase levels, and portal hypertension were noted in BDL rats. Our results suggest that bile duct ligation in the rat induces mitochondrial dysfunction and biochemical and molecular changes related to oxidative stress in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology 34:859–867;2001.

    Google Scholar 

  2. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254;1976.

    Google Scholar 

  3. Casini A, Pinzani M, Milani S, Grappone C, Galli G, Jezequel AM, Schuppan D, Rotella CM, Surrenti C. Regulation of extracellular matrix synthesis by transforming growth factor β1 in human fat-storing cells. Gastroenterology 105:245–253;1993.

    Google Scholar 

  4. Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 324:933–940;1991.

    Google Scholar 

  5. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159;1987.

    Google Scholar 

  6. Clot P, Tabone M, Arico S, Albano E. Monitoring oxidative damage in patients with liver cirrhosis and different daily alcohol intake. Gut 35:1637–1643;1994.

    Google Scholar 

  7. De Bleser PJ. Xu G. Rombouts K. Rogiers V. Geerts A. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem 274:33881–33887;1999.

    Google Scholar 

  8. Eng FJ, Friedman SL. Transcriptional regulation in hepatic stellate cells. Semi Liver Dis 21:385–396;2001.

    Google Scholar 

  9. Franco D, Gigou M, Szekely AM, Bismuth H. Portal hypertension after bile duct obstruction: Effect of bile diversion on portal pressure in the rat. Arch Surg 114:1064–1067;1979.

    Google Scholar 

  10. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250;2000.

    Google Scholar 

  11. Garcia-Trevijano ER, Iraburu MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor betal induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells. Hepatology 29:960–970;1999.

    Google Scholar 

  12. George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: A potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 96:12719–12724;1999.

    Google Scholar 

  13. Groszmann RJ, de Francis R. Portal hypertension. In: Schiff ER, Sorrell MF, Maddrey WC, eds. Schiff's Diseases of the Liver. ed 8, Philadelphia, Lippincott-Raven Publishers, 387–442;1999.

    Google Scholar 

  14. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. ed 3, Oxford, Oxford University Press, 1999.

    Google Scholar 

  15. Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98:10469–10474;2001.

    Google Scholar 

  16. Helbock HJ, Beckman KB, Shigenaga MK, Walter PB, Woodall AA, Yeo HC, Ames BN. DNA oxidation matters: The HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci USA 95:288–293;1998.

    Google Scholar 

  17. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol 30:77–87;1999.

    Google Scholar 

  18. Huang Y-T, Lee T-Y, Lin H-C, Chou T-Y, Yang Y-Y, Hong C-Y. Hemodynamic effects ofSalvia miltiorrhiza on cirrhotic rats. Can J Physiol Pharmacol 79:566–572;2001.

    Google Scholar 

  19. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D and Lemasters JJ. Mechanisms of hepatotoxicity. Toxicol Sci 65:166–176;2002.

    Google Scholar 

  20. Jia J-D, Bauer M, Cho JJ, Ruehl M, Milani S, Boigk, Riecken EO, Schuppan D. Antifibrotic effect of silymarin in rat biliary fibrosis is mediated by downregulation of procollagen 1(I) and TIMP-1. J Hepatol 35:392–398;2001.

    Google Scholar 

  21. Kaplowitz N. Mechanisms of liver cell injury. J Hepatol 32(suppl):39–47;2000.

    Google Scholar 

  22. Kitada T, Seki S, Iwai S, Yamada Y, Sakaguchi H, Wakasa K. In situ detection of oxidative DNA damage, 8-hydroxydeoxyguanosine, in chronic human liver diseases. J Hepatol 35:613–618;2001.

    Google Scholar 

  23. Knittel T, Janneck T, Muller L, Fellmer, Ramadori G. Transforming growth factor β1-regulated gene expression of Ito cells. Hepatology 24:352–360;1996.

    Google Scholar 

  24. Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct ligation: A new experimental model for cirrhosis in the rat. Br J Exp Pathol 65:305–311;1981.

    Google Scholar 

  25. Krahenbuhl S, Stucki J, Reichen J. Mitochondrial function in carbon tetrachloride-induced cirrhosis in the rat. Qualitative and quantitative defects. Biochem Pharmacol 38:1583–1588;1989.

    Google Scholar 

  26. Krahenbuhl S, Stucki J, Reichen J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 15:1160–1166;1992.

    Google Scholar 

  27. Krahenbuhl S, Talos C, Fischer S, Reichen J. Toxicity of bile acids on the electron transport chain of isolated rat liver mitochondria. Hepatology 19:471–479;1994.

    Google Scholar 

  28. Krahenbuhl S, Talos C, Lauterburg BH, Reichen J. Reduced antioxidant capacity in liver mitochondria from bile duct ligated rats. Hepatology 22:607–612;1995.

    Google Scholar 

  29. Lee SS, Girod C, Braillon A, Hadengue A, Lebrec D. Hemodynamic characterization of chronic bile duct-ligated rats: Effect of pentobarbital sodium. Am J Physiol 251:G176-G180;1986.

    Google Scholar 

  30. Martinez-Prieto C, Ortiz MC, Fortepiani LA, Ruiz-Macia J, Atucha NM, Garcia-Estan J. Haemodynamic and renal evolution of the bile duct-ligated rat. Clin Sci 98:611–617;2000.

    Google Scholar 

  31. McCord JM. The evolution of free radicals and oxidative stress. Am J Med 108:652–659;2000.

    Google Scholar 

  32. Meagher EA, Barry OP, Burke A, Lucey MR, Lawson JA, Rokach J, FitzGerald GA. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest 104:805–813;1999.

    Google Scholar 

  33. Meagher EA, FitzGerald GA. Indices of lipid peroxidation in vivo: Strengths and limitations. Free Radic Biol Med 28:1745–1750;2000.

    Google Scholar 

  34. Napoli J, Prentice D, Niinami C, Bishop GA, Desmond P, McCaughan GW. Sequential increases in the intrahepatic expression of epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta in a bile duct ligated rat model of cirrhosis. Hepatology 26:624–633;1997.

    Google Scholar 

  35. Nieto N, Friedman SL, Cederbaum AI. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived oxygen species. Hepatology 35:62–73;2002.

    Google Scholar 

  36. Olaso E, Friedman SL. Molecular regulation of hepatic fibrogenesis. J Hepatol 29:836–847;1998.

    Google Scholar 

  37. Parola M, Pinzani M, Casini A, Albano E, Poli G, Gentilini A, Gentilini P, Dianzani MU. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1 (I) gene expression in human liver fat-storing cells. Biochem Biophys Res Commun 194:1044–1050;1993.

    Google Scholar 

  38. Pastor A, Collado PS, Almar M, Gonzales-Gallego J. Antioxidant enzyme status in biliary obstructed rats: effects of N-acetylcysteine. J Hepatol 27:363–370;1997.

    Google Scholar 

  39. Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis 19:397–410;1999.

    Google Scholar 

  40. Sakaida I, Uchida K, Matsumura Y, Okita K. Interferon gamma treatment prevents procollagen gene expression without affecting transforming growth factor-β1 expression in pig serum-induced rat liver fibrosis. J Hepatol 28:471–479;1998.

    Google Scholar 

  41. Shiba M, Shimizu I, Yasuda M, Ii K, Ito S. Expression of type I and type III collagens during the course of dimethylnitrosamine-induced hepatic fibrosis in rats. Liver 18:196–204;1998.

    Google Scholar 

  42. Shigenaga MK, Hagan TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778;1994.

    Google Scholar 

  43. Shimizu I, Ma, Y-R, Mizobuchi Y, Liu. F, Miura T, Nakai Y, Yasuda M, Shiba M, Horie T, Amagaya S, Kawada N, Hori H, Ito S. Effects of Sho-saiko-to, a Japanese herbal medicine, on hepatic fibrosis in rats. Hepatology 29:149–160;1999.

    Google Scholar 

  44. Simile MM, Banni S, Angioni E, Carta G, De Miglio MR, Muroni MR, Calvisi DF, Carru A, Pascale RM, Feo F. 5′-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. J Hepatol 34:386–394;2001.

    Google Scholar 

  45. Sokol RJ, Winklhofer-Roob BM, Devereaux MW, McKim JM. Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 109:1249–1256;1995.

    Google Scholar 

  46. Svegliati Baroni G, D'Ambrosio L, Ferretti G, Casini A, Di Sario A, Salzano R, Ridolfi F, Saccomanno S, Jezequel AM, Benedetti A. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 27:720–726;1998.

    Google Scholar 

  47. Tarng D-C, Huang T-P, Liu T-Y, Chen H-W, Sung Y-J, Wei Y-H. Effect of vitamin E-bonded membrane on the 8-hydroxy 2′-deoxyguanosine level in leukocyte DNA of hemodialysis patients. Kidney Int 58:790–799;2000.

    Google Scholar 

  48. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005-L1028;2000.

    Google Scholar 

  49. Tsai JL, King KL, Chang CC, Wei YH. Changes of mitochondrial respiratory functions and superoxide dismutase activity during liver regeneration. Biochem Int 28:205–217;1992.

    Google Scholar 

  50. Tsai LY, Lee KT, Tsai SM, Lee SC, Yu HS. changes of lipid peroxide levels in blood and liver tissue of patients with obstructive jaundice. Clin Chim Acta 215:41–50;1993.

    Google Scholar 

  51. Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E, Fujimoto J. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med 5:226–230;1999.

    Google Scholar 

  52. Vercesi A, Reynafarje B, Lehninger AL, Stoichiometry of H+ ejection and Ca2+ uptake coupled to electron transport in rat heart mitochondria. J Biol Chem 253:6379–6385;1978.

    Google Scholar 

  53. Wasser S, Ho JMS, Ang HK, Tan CEL.Salvia miltiorrhiza reduced experimentally-induced hepatic fibrosis in rats. J Hepatol 29:760–771;1998.

    Google Scholar 

  54. Wong SHY, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehydethiobarbituric acid adduct. Clin Chem 33:214–220;1987.

    Google Scholar 

  55. Zhang M, Song G, Minuk GY. Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology 110:1150–1155;1996.

    Google Scholar 

  56. Zheng XX, Shoffner JM, Voljavec AS, Wallace DC. Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies. Biochim Biophys Acta 1019:1–10;1990.

    Google Scholar 

  57. Zimmermann H, Blaser H, Zimmermann A, Reichen J. Effect of development on the functional and histological changes induced by bileduct ligation in the rat. J Hepatol 20:231–239;1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YT., Hsu, YC., Chen, CJ. et al. Oxidative-stress-related changes in the livers of bile-duct-ligated rats. J Biomed Sci 10, 170–178 (2003). https://doi.org/10.1007/BF02256052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256052

Key Words

Navigation