Skip to main content
Log in

Ischemia-reperfusion-related repair deficit after oxidative stress: Implications of faulty transcripts in neuronal sensitivity after brain injury

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Diseases of the heart are the No. 1 killer in industrialized countries. Brain injury can develop as a result of cerebral ischemia-reperfusion due to stroke (brain attack) and other cardiovascular diseases. Learning about the disease is the best way to reduce disability and death. We present here whether gene repair activities are associated with neuronal death in an ischemia-reperfusion model that simulates stroke in male Long-Evans rats. This experimental stroke model is known to induce necrosis in the ischemic cortex. Cerebral ischemia causes overactivation of membrane receptors and accumulation of extracellur glutamate and intracellular calcium, which activates neuronal nitric oxide synthase, causing damage to lipids, proteins, and nucleic acids, and reduces energy sources with consequent functional deterioration, leading to cell death. Restoration processes normally repair genes with few errors. However, ischemia elevates oxidative DNA lesions despite these repair mechanisms. These episodes concurrently occur with the induction of immediate-early genes that critically activate other late genes in the signal transduction pathway. Damage, repair, and transcription of the c-fos gene are presented here as examples, because Fos peptide, one of the components of activator protein 1, activates nerve growth factor and repair mechanisms. The results of our studies show that treatments with 7-nitroindazole, a specific inhibitor of nitric oxide synthase known to attenuate nitric oxide, oxidative DNA lesions, and necrosis, increase intact c-fos mRNA levels after stroke. This suggests that the accuracy of gene expression could be accounted for the recovery of cellular function after cerebral injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akins PT, Liu PK, Hsu CY. Immediate early gene expression in response to cerebral ischemia: Friend or foe? Stroke 27:1682–1687;1996.

    Google Scholar 

  2. An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY. Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 33:457–464;1993.

    Google Scholar 

  3. Arvidsson A, Kokaia Z, Lindvall O. N-methyl-D-Aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18;2001.

    Google Scholar 

  4. Camandola S, Poli G, Mattson MP. The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J Neurochem 74:159–168;2000.

    Google Scholar 

  5. Cardozo-Pelaez F, Brooks PJ, Stedeford T, Song S, Sanchez-Ramos J. DNA damage, repair, and antioxidant systems in brain regions: A correlative study. Free Radic Biol Med 28:779–785;2000.

    Google Scholar 

  6. Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937–1942;2000.

    Google Scholar 

  7. Chen D, Lan J, Pei W, Chen J. Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J Neurosci Res 61:225–236;2000.

    Google Scholar 

  8. Chen H, Hu C, He YY, Yang D, Xu J, Hsu CY. Reduction and restoration of mitochondrial DNA content after focal cerebral ischemia/reperfusion. Stroke 32:2382–2387;2001.

    Google Scholar 

  9. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction. Stroke 17:738–743;1986.

    Google Scholar 

  10. Cherian L, Goodman JC, Robertson CS. Brain nitric oxide changes after controlled cortical impact injury in rats. J Neurophysiol 83:2171–2178;2000.

    Google Scholar 

  11. Cui JK, Hsu CY, Liu PK. Suppression of postischemic hippocampal nerve growth factor expression by a c-fos antisense oligodeoxynucleotide. J Neurosci 19:2784–2893;1999.

    Google Scholar 

  12. Cui JK, Holmes EH, Liu PK. Oxidative damage to the c-fos gene and reduction of its transcription after focal cerebral ischemia. J Neurochem 73:1164–1174;1999.

    Google Scholar 

  13. Cui JK, Holmes EH, Cao S, Greene TG, Liu PK. Oxidative DNA damage preceded DNA fragmentation after focal cerebral ischemia-reperfusion in the rat brain. FASEB J 14:955–967;2000.

    Google Scholar 

  14. Cui JK, Liu PK. Neuronal NOS inhibitor that reduces oxidative DNA lesions and neuronal sensitivity increases the expression of intact c-fos transcripts after brain injury. J Biomed Sci 8:336–341;2001.

    Google Scholar 

  15. Curran T, Gordon MB, Rubino KL, Sambucetti LC. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2:79–84;1987.

    Google Scholar 

  16. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371;1991.

    Google Scholar 

  17. Deng X, Ladenheim B, Tsao LI, Cadet JL. Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity. J Neurosci 19:10107–10115;1999.

    Google Scholar 

  18. Deng X, Jayanthi S, Ladenheim B, Krasnova IN, Cadet JL. Mice with partial deficiency of c-jun show attenuation of methamphetamine-induced neuronal apoptosis. Mol Pharmacol 62:993–1000;2002.

    Google Scholar 

  19. de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A, Bohr VA. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defictive mice. Cancer Res 61:5378–5381;2001.

    Google Scholar 

  20. Dietrich WD, Truettner J, Prado R, Stagliano NE, Zhao W, Busto R, Ginsberg MD, Watson BD. Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood Flow Metab 20:103–111;2000.

    Google Scholar 

  21. Dore S, Sampei K, Goto S, Alkayed NJ, Guastella D, Blackshaw S, Gallagher M, Traystman RJ, Hurn PD, Koehler RC, Snyder SH. Heme oxygenase-2 is neuroprotective in cerebral ischemia. Mol Med 5:656–663;1999.

    Google Scholar 

  22. Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J Cereb Blood Flow Metab 16:195–201;1996.

    Google Scholar 

  23. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystaman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095;1997.

    Google Scholar 

  24. Eliasson ML, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 19:5910–5918;1999.

    Google Scholar 

  25. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemia brain injury is mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 17:1143–1151;1997.

    Google Scholar 

  26. Englander EW, Greeley GH Jr, Wang G, Perez-Polo JR, Lee HM. Hypoxia-induced mitochondrial and nuclear DNA damage in the rat brain. J Neurosci Res 58:262–269;1999.

    Google Scholar 

  27. Estevez AG, Spear N, Manuel SM, Radi R, Henderson CE, Barbeita L, Beckman JS. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18:923–931;1998.

    Google Scholar 

  28. Floyd RA, Carney JM. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32:22–27;1992.

    Google Scholar 

  29. Floyd RA. Neuroinflammatory processes are important in neurodegenerative diseases: An hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355;1999.

    Google Scholar 

  30. Friedberg EC, Wagner R, Radman M. Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296:1627–1630;2002.

    Google Scholar 

  31. Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH. Early decrease of apurinic/apyrimidinic endonuclease expression after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 19:495–501;1999.

    Google Scholar 

  32. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501;1992.

    Google Scholar 

  33. Gillardon F, Skutella T, Uhlmann E, Holsboer F, Zimmermann M, Behl C. Activation of c-Fos contributes to amyloid beta-peptide-induced neurotoxicity. Brain Res 706:169–172;1996.

    Google Scholar 

  34. Gu W, Brannstrom T, Wester P. Cortical neurogenesis in adult rats after reversible photo-thrombotic stroke. J Cereb Blood Flow Metab 20:1166–1173;2000.

    Google Scholar 

  35. Gu ZZ, Pan C, Cui JK, Klebec M, Shenaq S, Liu PK. Gene expression and apoptosis in the spinal cord neurons after peripheral nerve damage. Neurochem Int 30:417–416;1997.

    Google Scholar 

  36. Harlan RE, Webber DS, Garcia MM. Involvement of nitric oxide in morphine-induced c-Fos expression in the rat striatum. Brain Res Bull 54:207–212;2001.

    Google Scholar 

  37. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:306–315;2000.

    Google Scholar 

  38. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 20:937–946;2000.

    Google Scholar 

  39. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885;1994.

    Google Scholar 

  40. Huang D, Shenoy A, Huang W, Cao S, Cui J, Liu PK. In situ detection of AP sites and DNA strand breaks with 3′-phophate ends in ischemic mouse brain. FASEB J 14:407–417;2000.

    Google Scholar 

  41. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME. Delayed reduction of ischemia brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 23:9157–9164;1997.

    Google Scholar 

  42. Isacson O, Seo H, Lin L, Albeck D, Granholm AC. Alzheimer's disease and Down's syndrome: Roles of APP, trophic factors and ACh. Trends Neurosci 25:79–84;2002.

    Google Scholar 

  43. Jiang W, Gu W, Brannstrom T, Rosqvist R, Wester P. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 32:1201–1207;2001.

    Google Scholar 

  44. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 98:4710–4715;2001.

    Google Scholar 

  45. Jones NM, Loiacono RE, Beart PM. Roles for nitric oxide as an intra- and interneuronal messenger at NMDA release-regulating receptors: Evidence from studies of the NMDA-evoked release of [3H]noradrenaline andD-[3H]aspartate from rat hippocampal slices. J Neurochem 64:2057–2063;1995.

    Google Scholar 

  46. Kamii H, Mikawa S, Murakami K, Kinouchi H, Yoshimoto T, Reola L, Carlson E, Epstein CJ, Chan PH. Effects of nitric oxide synthase inhibition on brain infarction in SOD-1-transgenic mice following transient focal cerebral ischemia. J Cereb Blood Flow Metab 16:1153–1157;1996.

    Google Scholar 

  47. Kano T, Shimizu-Sasamata M, Huang PL, Moskowitz MA, Lo EH. Effects of nitric oxide synthase gene knockout on neurotransmitter release in vivo. Neuroscience 86:695–699;1998.

    Google Scholar 

  48. Khan AU, Kovacic D, Kolbanovskiy A, Desai M, Frenkel K, Geacintov NE. The decomposition of peroxynitrite to nitroxyl anion (NO-) and singlet oxygen in aqueous solution. Proc Natl Acad Sci USA 97:2984–2989;2000.

    Google Scholar 

  49. Kim GW, Lewen A, Copin JC, Watson BD, Chan PH. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105:1007–1018;2001.

    Google Scholar 

  50. Kim J, Lin JJ, Xu RH, Kung HF. Mesoderm induction by heterodimeric AP-1 (c-Jun and c-Fos) and its involvement in mesoderm formation through the embryonic fibroblast growth factor/Xbra autocatalytic loop during the early development ofXenopus embryos. J Biol Chem 273:1542–1550;1998.

    Google Scholar 

  51. Kumura E, Yoshimine T, Iwatsuki KI, Yamanaka K, Tanaka S, Hayakawa T, Shiga T, Kasaka H. Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am J Physiol 270 (Cell Physiol 39):C748-C752;1996.

    Google Scholar 

  52. Lee YI, Park KH, Baik SH, Cha CI. Attenuation of c-Fos basal expression in the cerebral cortex of aged rat. Neuroreport 9:2733–2736;1998.

    Google Scholar 

  53. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma 17:871–890;2000.

    Google Scholar 

  54. Lin L, Cao S, Yu L, Cui J, Hamilton WJ, Liu PK. Up-regulation of base excision repair activity for 8-hydroxy-2′-deoxyguanosine in the mouse brain after forebrain ischemia-reperfusion. J Neurochem 74:1098–1105;2000.

    Google Scholar 

  55. Lin TN, Te J, Huang HC, Chi SI, Hsu CY. Prolongation and enhancement of postischemic c-fos expression after fasting. Stroke 28:412–418;1997.

    Google Scholar 

  56. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568;1999.

    Google Scholar 

  57. Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of NO and related nitroso compounds. Nature 364:626–632;1993.

    Google Scholar 

  58. Liu J, Bartels M, Lu A, Sharp FR. Microglia/macrophages proliferate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain. J Cereb Blood Flow Metab 21:361–373;2001.

    Google Scholar 

  59. Liu J, Ying W, Massa S, Duriez PJ, Swanson RA, Poirier GG, Sharp FR. Effects of transient global ischemia and kainate on poly(ADP-ribose) polymerase (PARP) gene expression and proteolytic cleavage in gerbil and rat brains. Brain Res Mol Brain Res 80:7–16;2000.

    Google Scholar 

  60. Liu PK, Salminen A, He YY, Jiang MH, Xue JJ, Liu JS, Hsu CY. Suppression of ischemia-induced Fos expression and AP-1 activity by an antisense oligodeoxynucleotide to c-fos mRNA. Ann Neurol 36:566–576;1994.

    Google Scholar 

  61. Liu PK, Hsu CY, Dizdaroglu M, Floyd RA, Kow YW, Karakaya A, Rabow LE, Cui JK. Damage, repair and mutagenesis in nuclear genes after mouse forebrain ischemia-reperfusion. J Neurosci 16:6795–6806;1996.

    Google Scholar 

  62. Liu PK, Grossman RG, Hsu CY, Robertson CS. Ischemic injury and faulty gene transcripts in the brain. Trends Neurosci 28:581–588;2001.

    Google Scholar 

  63. Liu PK, Arora T. Transcripts of damaged genes in the brain during cerebral oxidative stress. J Neurosci Res, in press.

  64. Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY. Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256:H589-H593;1989.

    Google Scholar 

  65. Liu Y, Gorospe M, Holbrook NJ, Anderson CW. Posttranslesional mechanism leading to mammalian gene activation in response to genotoxic stress. In: Nikoloff JA, Hoekstra MF, eds. DNA Damage and Repair. Vol. 2: DNA Repair in Higher Eukaryotes. Totowa, Humana Press, 263–298;1998.

    Google Scholar 

  66. Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet 20:201–230;1986.

    Google Scholar 

  67. Love S, Barber R, Wilcock GK. Apoptosis and expression of DNA repair proteins in ischemic brain injury in man. Neuroreport 9:955–959;1998.

    Google Scholar 

  68. Malinski T, Bailey F, Zhang ZG, Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 13:355–358;1993.

    Google Scholar 

  69. Mandir AS, Poitras MF, Berliner AR, Herring WJ, Guastella DB, Feldman A, Poirier GG, Wang ZQ, Dawson TM, Dawson VL. NMDA but not non-NMDA excitotoxicity is mediated by Poly(ADP-ribose) polymerase. J Neurosci 20:8005–8011;2000.

    Google Scholar 

  70. Moore N, Okocha F, Cui JK, Liu PK. Homogeneous repair of nuclear gene in the brain after experimental stroke. J Neurochem 80:111–118;2002.

    Google Scholar 

  71. Nagayama T, Simon RP, Chen D, Henshall DC, Pei W, Stetler RA, Chen J. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 74:1636–1645;2000.

    Google Scholar 

  72. O'Neill MJ, Hicks C, Ward M. Neuroprotective effects of 7-nitroindazole in the gerbil model of global cerebral ischemia. Eur J Pharmacol 310:115–122;1996.

    Google Scholar 

  73. Panahian N, Yoshida T, Huang PL, Hedley-Whyte ER, Dalkara T, Fishman MC, Moskowitz MA. Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase. Neuroscience 72:343–354;1996.

    Google Scholar 

  74. Park EM, Shigenaga MK, Degan P, Korn TS, Kitzler JW, Wehr CM, Kolachana P, Ames BN. Assay of excised oxidative DNA lesions: Isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc Natl Acad Sci USA 89:3375–3379;1992.

    Google Scholar 

  75. Raghupathi R, McIntosh TK. Regionally and temporally distinct patterns of induction of c-fos, c-jun and junB mRNAs following experimental brain injury in the rat. Brain Res Mol Brain Res 37:134–144;1996.

    Google Scholar 

  76. Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. Mice over-expressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47:782–791;2000.

    Google Scholar 

  77. Royland JE, Delfani K, Langston JW, Janson AM, Di Monte DA. 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Res 839:41–48;1999.

    Google Scholar 

  78. Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 240:1328–1331;1988.

    Google Scholar 

  79. Salminen A, Liu PK, Hsu CY. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212:939–944;1995.

    Google Scholar 

  80. Santizo R, Baughman VL, Pelligrino DA. Relative contributions from neuronal and endothelial nitric oxide synthases to regional cerebral blood flow changes during forebrain ischemia in rats. Neuroreport 11:1549–1553;2000.

    Google Scholar 

  81. Scott GS, Jakeman LB, Stokes BT, Szabo C. Peroxynitrite production and activation of poly(adenosine diphosphate-ribose) synthetase in spinal cord injury. Ann Neurol 45:120–124;1999.

    Google Scholar 

  82. Sharp FR. The sense of antisense fos oligonucleotide. Ann Neurol 36:555–556;1994.

    Google Scholar 

  83. Sharp JW, Sagar SM, Hisanaga K, Jasper P, Sharp FR. The NMDA receptor mediates cortical induction of fos and fos-related antigens following cortical injury. Exp Neurol 109:323–332;1991.

    Google Scholar 

  84. Sharp FR, Massa SM, Swanson RA. Heat-shock protein protection Trend Neurosci 22:97–99;1999.

    Google Scholar 

  85. Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20:1011–1032;2000.

    Google Scholar 

  86. Sheng M, Lee SH. Growth of the NMDA receptor industrial complex. Nat Neurosci 3:33–635;2000.

    Google Scholar 

  87. Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, Moskowitz MA, Lo EH. Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci 18:9564–9571;1998.

    Google Scholar 

  88. Smith MA, Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci 17:2653–2657;1997.

    Google Scholar 

  89. Takagi Y, Nozaki K, Takahashi J, Yodoi J, Ishikawa M, Hashimoto N. Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res 831:283–287;1999.

    Google Scholar 

  90. Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M, Che YH, Ozawa K, Hori O, Nishimura H, Tamashita A, Okabe M, Yanagi H, Stern DM, Ogawa S, Tohyama M. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7:317–323;2001.

    Google Scholar 

  91. Tokime T, Nozaki K, Sugino T, Kikuchi H, Hashimoto N, Ueda K. Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. J Cereb Blood Flow Metab 18:991–997;1998.

    Google Scholar 

  92. Tornaletti S, Maeda LS, Lloyd DR, Reines D, Hanawalt PC. Effect of thymine glycol upon transcription elongation by T7RNA polymerase and mammalian RNA polymerase II. J Biol Chem 276:45367–45371;2001.

    Google Scholar 

  93. Tischmeyer W, Grimm R, Schicknick H, Brysch W, Schlingensiepen KH. Sequence-specific impairment of learning by c-jun antisense oligonucleotides. Neuroreport 21:1502–1504;1994.

    Google Scholar 

  94. Whitfield PC, Pickard JD. Expression of the immediate early genes c-Fos and c-Jun after head injury in man. Neurol Res 22:138–144;2000.

    Google Scholar 

  95. Xu H, Barks JD, Liu YQ, Silverstein FS. AMPA-induced suppression of oligodendroglial gene expression in neonatal rat brain. Brain Res Dev Brain Res 132:175–178;2001.

    Google Scholar 

  96. Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44:584–591;1998.

    Google Scholar 

  97. Ying W, Sevigny MB, Chen Y, Swanson RA. Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci USA 98:12227–12232;2001.

    Google Scholar 

  98. Yip PK, He YY, Hsu CY, Garg N, Marangos P, Hogan EL. Effect of plasma glucose on infarct size in focal cerebral ischemia-reperfusion. Neurology 41:899–905;1991.

    Google Scholar 

  99. Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 14:924–929;1994.

    Google Scholar 

  100. Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 98:5874–5879;2001.

    Google Scholar 

  101. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689;1994.

    Google Scholar 

  102. Zhang ZG, Chopp M, Bailey F, Malinski T. Nitric oxide changes in the rat brain after transient middle cerebral artery occlusion. J Neurol Sci 128:22–27;1995.

    Google Scholar 

  103. Zhang YJ, Widmayer MA, Zhang B, Cui JK, Baskin DS. Suppression of post-ischemic-induced fos protein expression by an antisense oligonucleotide to c-fos mRNA leads to increased tissue damage. Brain Res 832:112–117;1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.K. Ischemia-reperfusion-related repair deficit after oxidative stress: Implications of faulty transcripts in neuronal sensitivity after brain injury. J Biomed Sci 10, 4–13 (2003). https://doi.org/10.1007/BF02255992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255992

Key Words

Navigation