Skip to main content
Log in

Providing a microenvironment for the development of human CD34+ hematopoietic cells in SCID mice

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

In order to develop a convenient small-animal model that can support the differentiation of human bone-marrow-derived CD34+ cells, we transplanted SCID mice with an immortalized human stromal cell line, Lof(11–10). The Lof(11–10) cell line has been characterized to produce human cytokines capable of supporting primitive human hematopoietic cell proliferation in vitro. Intraperitoneal injection of Lof(11–10) cells into irradiated SCID mice by itself resulted in a dose-dependent survival of the mice from lethal irradiation. The radioprotective survival was reflected by an increase in the growth and number of mouse bone-marrow-derived committed hematopoietic progenitors. The Lof(11–10) cells localized to the spleen, but not to the bone marrow of these animals and resulted in detectable levels of circulating human IL-6 in their plasma. Secondary intravenous injections of either human or simian CD34+ cells into the Lof(11–10)-transplanted SCID mice resulted in engraftment of injected cells within the bone marrow of these mice. The utility of this small-animal model that allows the growth and differentiation of human CD34+ cells and its potential use in clinical gene therapy protocols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkina RK, Rosenblatt JD, Campbell AG, Chen ISY, Zack JA. Modeling human lymphoid precursor cell gene therapy in the SCID-hu mouse. Blood 84:1393–1398;1994.

    PubMed  Google Scholar 

  2. Chen BP, Galy A, Kyoizumi S, Namikawa R, Scarborough J, Webb S, Ford B, Cen DZ, Chen S. Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice. Blood 84:2497–2505;1994.

    PubMed  Google Scholar 

  3. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157;1984.

    PubMed  Google Scholar 

  4. Davis TA, Robinson DH, Lee KP, Kessler SW. Porcine brain microvascular endothelial cells support the in vitro expansion of human primitive hematopoietic bone marrow progenitor cells with a high replating potential: Requirement for cell-to-cell interactions and colony stimulating factors. Blood 85:1751–1760;1995.

    PubMed  Google Scholar 

  5. Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol 91:335–344;1976.

    Article  Google Scholar 

  6. Dick JE, Pflumio F, Lapidot T. Mouse models for human hematopoiesis. Immunology 3:367–378;1991.

    Google Scholar 

  7. Duchosal MA, Eming SA, McConahey PJ, Dixon FJ. Long-term human serologic evolution associated with the xenogeneic transfer of human peripheral blood leucocytes into SCID mice. Cellular Immunol 139:468–477;1992.

    Google Scholar 

  8. Fairbairn LJ, Cowling GJ, Reipert BM, Dexter TM. Suppression of apoptosis allows differentiation and development of a multipotent hematopoietic cell line in the absence of added growth factors. Cell 74:823–832;1993.

    Article  PubMed  Google Scholar 

  9. Fraser CC, Kaneshima H, Hansteen G, Kilpatrick M, Hoffman R, Chen BP. Human allogeneic stem cell maintenance and differentiation in a long-term multilineage SCID-hu graft. Blood 86:1680–1693;1995.

    PubMed  Google Scholar 

  10. Goan SR, Fichtner I, Just U, Karawajew L, Schultze W, Krause KP, von Harsdorf S, von Schilling C, Herrmann F. The severe combined immunodeficient-human peripheral blood stem cell (SCID-huPBSC) mouse: A xenotrans-plant model for huPBSC-initiated hematopoiesis. Blood 86:89–100;1995.

    PubMed  Google Scholar 

  11. Gordon MY, Greaves MF. Physiological mechanisms of stem cell regulation in bone marrow transplantation and haemopoiesis. Bone Marrow Transplant 4:335–338;1989.

    PubMed  Google Scholar 

  12. Heike Y, Ohira T, Takahashi M, Saijo N. Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells. Blood 86:524–530;1995.

    PubMed  Google Scholar 

  13. Kaneshima H, Baum C, Chen B, Namikawa R, Outzen H, Rabin L, Tsukamoto A, McCune JM. Use of the SCID-hu mouse — an immunodeficient mouse transplanted with revelant organs of the human immune system — as a preclinical testing system for human therapeutics is discussed. Nature 348:561–562;1990.

    Article  PubMed  Google Scholar 

  14. Kaushal S, La Russa VF, Gartner S, Kessler S, Perfetto S, Yu Z, Ritchey DW, Xu J, Perera P, Kim J, Reid T, Mayers DL, St. Louis D, Mosca JD. Exposure of human CD34+ cells cells to human immunodeficiency virus type 1 does not influence their expansion and proliferation of hematopoietic progenitors in vitro. Blood 88:130–137;1996.

    PubMed  Google Scholar 

  15. Kollmann TR, Kim A, Zhuang X, Hachamovitch M, Goldstein H. Reconstitution of SCID mice with human lymphoid and myeloid cells after transplantation with human fetal bone marrow without the requirement for exogenous human cytokines. Proc Natl Acad Sci USA 91:8032–8036;1994.

    PubMed  Google Scholar 

  16. Kyoizumi S, Baum CM, Kaneshima H, McCune JM, Yee EJ, Namikawa R. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood 79:1704–1711;1992.

    PubMed  Google Scholar 

  17. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255:1137–1141;1992.

    PubMed  Google Scholar 

  18. Lieveld JL, Rush S, Kempski MC, Turner RA, Brennan JK, Gasson JC, Abboud CN. Phenotypic characterization of the human fibrous histiocytoma giant cell tumor (GCT) cell line and its cytokine repertoire. Exp Hematol 21:1342–1352;1993.

    PubMed  Google Scholar 

  19. McCune JM, Namikawa R, Kaneshima H, Schultz LD, Lieberman M, Weissman L. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–1639;1988.

    PubMed  Google Scholar 

  20. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30;1989.

    Article  PubMed  Google Scholar 

  21. Mosca JD, Kaushal S, Gartner S, Kessler SW, LaRussa VF, Terwilliger EF, Kim JH, Carroll RG, Hall ER, Perera LP, Yu Z, Ritchey DW, Xu J, St. Louis DC, Mayers DL. Characterization of a human stromal cell line supporting hematopoietic progenitor cell proliferation: Effect of HIV expression. J Biomed Sci 2:330–342;1995.

    Article  PubMed  Google Scholar 

  22. Mulligan RC, Berg P. Selection for animal cells that express theE. coli gene coding for xanthine guanine phosphotransferase. Proc Natl Acad Sci USA 78:2072–2076;1981.

    PubMed  Google Scholar 

  23. Neta R, Oppenheim JJ, Douches JD. Interdependence of the radioprotective effects of human recombinant IL-1, TNF, G-CSF, and murine recombinant GM-CSF. J Immunol 140:108–114;1988.

    PubMed  Google Scholar 

  24. Neta R, Oppenheim JJ, Schreiber RD, Chizzonete R, Ledney GD, Mac Vittie TJ. Role of cytokines (interleukin 1, tumor necrosis factor, and transforming factor, and transforming growth factor β) in nature and lipopolysaccharide-enhanced radioresistance. J Exp Med 173:1177–1183;1991.

    Article  PubMed  Google Scholar 

  25. Neta R, Perlstein S, Vogel SN, Ledney GD, Adams J. Role of IL-6 in protection from lethal irradiation and in endocrine responses to IL-1 and TNF. J Exp Med 175:689–695;1992.

    Article  PubMed  Google Scholar 

  26. Nolta JA, Hanley MB, Kohn DB. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: Analysis of gene transduction of long-lived progenitors. Blood 83:3041–3051;1994.

    PubMed  Google Scholar 

  27. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62;1988.

    PubMed  Google Scholar 

  28. Stiles C, Desmond W Jr, Sato G, Sair M Jr. Failure of human cells transformed by simian virus 40 to form tumors in athymic nude mice. Proc Natl Acad Sci USA 72:4971–4975;1971.

    Google Scholar 

  29. Strauss LC, Rowley SD, La Russa VF, Sharkis SJ, Stuart RK, Civin CI. Antigenic analysis of hematopoiesis. V. Characterization of MY-10 antigen expression by normal hymphohematopoietic progenitor cells. Exp Hematol 14:878–884;1986.

    PubMed  Google Scholar 

  30. Wagner JE, Collins D, Fuller S, Schain LR, Berson AE, Almici C, Hall MA, Chen KE, Okarma TB, Lebowski JS. Isolation of small, primitive human hematopoietic stem cell: Distribution of cell surface cytokine receptors and growth in SCID-hu mice. Blood 86:512–523;1995.

    PubMed  Google Scholar 

  31. Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GC, Clark SC. Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10;1986.

    Article  PubMed  Google Scholar 

  32. Zucali JR, Moreb J, Gibbons W, Alderman J, Suresh A, Zhang Y, Shelby B. Radioprotection of hematopoietic stem cells by interleukin-1. Exp Hematol 22:130–136;1994.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushal, S., La Russa, V.F., Hall, E.R. et al. Providing a microenvironment for the development of human CD34+ hematopoietic cells in SCID mice. J Biomed Sci 4, 61–68 (1997). https://doi.org/10.1007/BF02255595

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255595

Key Words

Navigation