Skip to main content
Log in

Analysis of primer extension and the first template switch during human immunodeficiency virus reverse transcription

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Reverse transcription by human immunodeficiency virus (HIV) reverse transcriptase (RT) entails several distinct, early steps in the synthesis of double-stranded DNA from viral RNA templates. These steps include tRNAlys3 priming of RNA-dependent DNA polymerization and template switching for synthesis of near full-length (-) DNA. However, HIV RT lacks the fluent processivity of other viral reverse transcriptases or cellular polymerases. Previous studies in our laboratory showed that RT reactions primed with tRNAlys3 had higher efficiencies of template switching than those primed by synthetic oligonucleotides. To further study primer extension, pausing, and template switching, we utilized an in vitro reconstituted reverse transcription/template switching reaction consisting of HIV RNA templates, recombinant HIV RT and primer tRNAlys3. We observed initial pause sites within the first five nucleotides of the primer terminus; these were extended efficiently to full-length (-) strong-stop DNA with prolonged incubation. Other pause sites occurred in the R/U5/PBS template adjacent to homopolymeric sequences and regions thought to be involved in secondary structure. This assay provides a sensitive means of assessing template switching at times between 10 s and 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbotts, J, Bebenek K, Kunkel TA, Wilson SH. Mechanism of HIV-1 reverse transcriptase: termination of processive synthesis on a natural DNA template is influenced by the sequence of the template-primer stem. J Biol Chem 268:10312–10323;1993.

    Google Scholar 

  2. Arts EJ, Li X, Kleiman L, Parniak MA, Wainberg MA. Comparison of deoxy-oligonucleotide and tRNAlys3 as primers in an endogenous HIV-1 in vitro reverse transcription/template switching reaction. J Biol Chem 269:14672–14680;1994.

    Google Scholar 

  3. Arts EJ, Wainberg MA. Preferential incorporation of nucleoside analogs after template switching during human immunodeficiency virus reverse transcription. Antimicrob Agents Chemother 38:1008–1016;1994.

    Google Scholar 

  4. Bakhanashvili M, Hizi A. Fidelity of the RNA-dependent DNA synthesis exhibited by the reverse transcriptases of human immunodeficiency virus types 1 and 2 and of murine leukemia virus: mispair extension frequencies. Biochemistry 31:9393–9398;1992.

    Google Scholar 

  5. Barat G, Lullien V, Schatz O, Keith G, Nugeyre MT, Gruninger-Leitch F, Barré-Sinoussi F, LeGrice SFJ, Darlix JL. HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J 8:3279–3285;1989.

    Google Scholar 

  6. Baudin F, Marquet R, Isel C, Darlix J-L, Ehresmann B, Ehresmann C. Functional sites in the 5′ region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol 229:382–397;1993.

    Google Scholar 

  7. DeStefano JJ, Mallaber LM, Rodriguez L, Fay PJ, Bambara RA. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J Virol 66:6370–6378;1992.

    Google Scholar 

  8. Furfine ES, Reardon JE. Reverse transcriptase-RNase H from the human immunodeficiency virus: relationship of the DNA polymerase and RNA hydrolysis activities. J Biol Chem 266:406–412;1991.

    Google Scholar 

  9. Gilboa E, Mitra SW, Goff S, Baltimore D. A detailed model of reverse transcription and tests for crucial aspects. Cell 18:93–100;1979.

    Google Scholar 

  10. Gopalakrishnan V, Peliska JA, Benkovic SJ. Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc Natl Acad USA 89:10763–10767;1992.

    Google Scholar 

  11. Gu Z, Fletcher RS, Arts EJ, Wainberg MA, Parniak MA. The K65R mutant reverse transcriptase of HIV-1 cross-resistant to 2′,3′-dideoxycytidine, 2′,3′-dideoxy-3′-thiacytidine, and 2′,3′-dideoxyinosine shows reduced sensitivity to specific dideoxynucleoside triphosphate inhibitors in vitro. J Biol Chem 269:28118–28122;1994.

    Google Scholar 

  12. Haseltine WA, Kleid DG, Panet A, Rothenberg E, Baltimore D. Ordered transcription of RNA tumor virus genomes. J Mol Biol 26:4298–4332;1976.

    Google Scholar 

  13. Huber HE, McCoy JM, Seehra JS, Richardson CC. Human immunodeficiency virus type 1: template binding, processivity, strand displacement synthesis, and template switching. J Biol Chem 264:4669–4678;1989.

    Google Scholar 

  14. Isel C, Marquet R, Keith G, Ehresmann C, Ehresmann B. Modified nucleotides of tRNAlys3 modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem 268:25269–25272;1993.

    Google Scholar 

  15. Khan R, Giedroc DP. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA. J Biol Chem 267:6689–6695;1991.

    Google Scholar 

  16. Klarmann GJ, Schauber CA, Preston BD. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem 268:9793–9802;1993.

    Google Scholar 

  17. Luo G, Taylor J. Template switching by reverse transcriptase during DNA synthesis. J Virol 64:4321–4328;1990.

    Google Scholar 

  18. Marquet R, Paillart J-C, Skripkin E, Ehresmann C, Ehresmann B. Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res 22:145–151;1994.

    Google Scholar 

  19. Ouhammouch M, Brody EN. Temperature-dependent template switching during in vitro cDNA synthesis by the AMV-reverse transcriptase. Nucleic Acids Res 20:5443–5450;1992.

    Google Scholar 

  20. Panganiban AT, Fiore P. Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064–1069;1988.

    Google Scholar 

  21. Peliska JA, Benkovic SJ. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 256:1112–1118;1992.

    Google Scholar 

  22. Restle T, Muller B, Goody RS. Dimerization of human immunodeficiency virus type 1 reverse transcriptase: a target for chemotherapeutic intervention. J Biol Chem 165:8986–8988;1990.

    Google Scholar 

  23. Sarih-Cottin L, Brodier B, Musier-Forsyth K, Andreola ML, Barr PJ, Litvak S. Preferential interaction of human immunodeficiency virus reverse transcriptase with two regions of primer tRNAlys as evidenced by footprinting studies and inhibition with synthetic oligorubonucleotides. J Mol Biol 226:1–6;1992.

    Google Scholar 

  24. Veronese FD, Copeland TD, DeVico AL, Rahman R, Oroszlan S, Gallo RC, Sarngadharan MG. Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. Science 231:1289–1291;1986.

    Google Scholar 

  25. Weiss R, Teich N, Varmus H, Coffin J. RNA Tumor Viruses. Cold Spring Harbour, Cold Spring Harbour University Press.

  26. Wohrl BM, Ehresmann B, Keith G, LeGrice SFJ. Nuclease footprinting for human immunodeficiency virus reverse transcriptase/tRNAlys3 complexes. J Biol Chem 268:13617–13624;1993.

    Google Scholar 

  27. Yu H, Goodman MF. Comparison of HIV-1 and avian myeloblastosis virus reverse transcriptase fidelity on RNA and DNA templates. J Biol Chem 267:10888–10896;1992.

    Google Scholar 

  28. Zucher H, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 18:1839–1846;1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arts, E.J., Li, Z. & Wainberg, M.A. Analysis of primer extension and the first template switch during human immunodeficiency virus reverse transcription. J Biomed Sci 2, 314–321 (1995). https://doi.org/10.1007/BF02255218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255218

Key Words

Navigation