Skip to main content
Log in

Somatic cell genetic and biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression

  • Published:
Somatic Cell and Molecular Genetics

Abstract

We have isolated several non-leaky mutant Chinese hamster ovary (CHO) cell clones (M4, M19, and M21) requiring cholesterol and unsaturated fatty acid for growth. These mutants belong to the same complementation group as the mutant M1 cells previously reported from this laboratory. M19 cells reverted to lipid prototrophy at very low frequency and were chosen as recipients to perform DNA-mediated gene-transfer experiments using total human genomic DNAs. Biochemical characterization of these transfectant clones indicated that, unlike their parental M19 cells, they were able to exhibit activation of cholesterol biosynthesis and LDL receptor expression in response to sterol removal from the growth medium. RNA blotting analysis indicated that these transfectants were able to increase HMG-CoA synthase gene transcripts in response to sterol removal. From the genomic DNAs of a representative secondary transfectant cell, we cloned a unique human DNA fragment (designated as hλ2) and showed that hλ2 is closely linked with the presumptive human M1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Goldstein, J.L., and Brown, M.S. (1990).Nature 343:425–430.

    Article  PubMed  Google Scholar 

  2. Chang, T.Y. (1983). InThe Enzyme Vol. 16, (ed.) Boyer P.D. (Academic Press, New York), pp. 491–521.

    Google Scholar 

  3. Lenard, S., and M. Sinensky. (1988).Biochim. Biophys. Acta 47:101–112.

    Google Scholar 

  4. Metherall, J.E., Goldstein, J.L., Luskey, K.L., and Brown, M.S. (1989).J. Biol. Chem. 264:15641–15643.

    Google Scholar 

  5. Panini, S.R., Lutz, R.J., Wenger, L., Miyake, J., Leonard, S., Andalibi, A., Lusis, A.J., and Sinensky, M. (1980).J. Biol. Chem. 265:14118–14226.

    Google Scholar 

  6. Edwards, P.A., and Fogelman, A.M. (1990). InCurrent Opinion in Lipidology, Vol. 1, (Current Science, London), pp. 136–139.

    Google Scholar 

  7. Rudney, H., and Panini, S.R. (1993). InCurrent Opinion in Lipidology, Vol. 4, (Current Science, London), pp. 230–237.

    Google Scholar 

  8. Russell, D.W. (1992).Cardiovasc. Drugs Ther. 6:103–110.

    Article  PubMed  Google Scholar 

  9. Briggs, M.R., Yokoyama, C.K., Wang, X.W., Brown, M.S., and Goldstein, J.L. (1993).J. Biol. Chem. 268:14490–14496.

    PubMed  Google Scholar 

  10. Osborne, T.F., Bennett, M., and Rhee, K. (1992).J. Biol. Chem. 267:18973–18982.

    PubMed  Google Scholar 

  11. Spear, D.H., Kutsunai, S.Y., Correll C.C., and Edwards, P.A. (1992).J. Biol. Chem. 267:14462–14469.

    PubMed  Google Scholar 

  12. Wang, X.W., Briggs, M.R., Hua, X., Yokoyama, C.K., Goldstein, J.L., and Brown, M.S. (1993).J. Biol. Chem. 268:14497–14504.

    PubMed  Google Scholar 

  13. Chin, J., and Chang, T.Y. (1981).J. Biol. Chem. 256:6304–6310.

    PubMed  Google Scholar 

  14. Chin, J., and Chang, T.Y. (1982).Biochemistry 21:3196–3202.

    Article  PubMed  Google Scholar 

  15. Limanek, J.S., Chin, J., and Chang, T.Y. (1978)Proc. Natl. Acad. Sci. U.S.A. 75:5452–5456.

    PubMed  Google Scholar 

  16. Evans, M.J., and Metherall, J.E. (1993).Mol. Cell Biol. 13:5175–5185.

    PubMed  Google Scholar 

  17. Urlaub, G., Mitchell, P.J., Kas, E., Chasin, A. A., Funanage, V.L., Myoda, T.T., and Hamlin, J. (1986).Somat. Cell Mol. Genet. 12:555.

    Article  PubMed  Google Scholar 

  18. Chang, T.Y., and Chang, C.C.Y. (1982).Biochemistry 21:5316–5323.

    Article  PubMed  Google Scholar 

  19. Kreiger, M., Martin, J., Segal, M., and Kingsley, D. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:5607–5611.

    PubMed  Google Scholar 

  20. Cadigan, K.M., Heider, J.G., and Chang, T.Y. (1988).J. Biol. Chem. 263:274–282.

    PubMed  Google Scholar 

  21. Davidson, R.L., O'Malley, K.A., and Wheeler, T.B. (1976).Somat. Cell Genet. 2:271–280.

    Article  PubMed  Google Scholar 

  22. Dillela, A.G., and Woo, S.L.C. (1985).Focus 7:1–3.

    Google Scholar 

  23. Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., and Chasin, L. (1979).Proc. Natl. Acad. Sci. U.S.A. 76:1373–1376.

    PubMed  Google Scholar 

  24. Wigler, M., Sweet, R., Sim, G.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axel, R. (1979).Cell 16:777–785.

    Article  PubMed  Google Scholar 

  25. Hasan, M.T., Subbaroyan, R., and Chang, T.Y. (1991).Somat. Cell Mol. Genet. 17:513–516.

    Article  PubMed  Google Scholar 

  26. Southern, P.L., and Berg, P. (1982).J. Mol. Appl. Genet. 1:327–341.

    PubMed  Google Scholar 

  27. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  28. Feinberg, A.P., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.

    Article  PubMed  Google Scholar 

  29. Chang, C.C.Y., Doolittle, G.M., and Chang, T.Y. (1986).Biochemistry 25:1693–1699.

    Article  PubMed  Google Scholar 

  30. Goldstein, J.L., Basu, S.K., and Brown, M.S. (1983).Methods Enzymol. 8:241–260.

    Google Scholar 

  31. Gil, G., Brown, M.S., and Goldstein, J.L. (1986).J. Biol. Chem. 261:3717–3725.

    PubMed  Google Scholar 

  32. Nudel, U., Zakut, R., Shani, M., Neuman, S., Levy, Z., and Yaffe, D. (1983).Nucleic Acid Res. 11:1759–1771.

    PubMed  Google Scholar 

  33. Correa-Rotter, R., Mariash, C.N., and Rosenberg, M.E. (1992).Biotechniques 12:154–158.

    PubMed  Google Scholar 

  34. Korenberg, J.R., and Rykowski, M.C. (1988).Cell 53:391–400.

    Article  PubMed  Google Scholar 

  35. Cadigan, K.M., Chang, C.C.Y., and Chang, T.Y., (1989).J. Cell Biol. 108:2201–2210.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, M.T., Chang, C.C.Y. & Chang, T.Y. Somatic cell genetic and biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression. Somat Cell Mol Genet 20, 183–194 (1994). https://doi.org/10.1007/BF02254759

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02254759

Keywords

Navigation