Skip to main content
Log in

The tumor suppressor p53 can reduce stable transfection in the presence of irradiation

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

The tumor suppressor p53 is believed to play an essential role in maintaining genome stability. Although it is currently unknown how p53 is involved in this important biological safeguard, several previous publications indicate that p53 can help to maintain genome integrity through the recombination-mediated DNA repair process. The integration of linearized plasmid DNA into the host chromosome utilizes the same repair process, and the frequency can be measured by clonogenic assays in which cells that were stably transfected by plasmid integration can be scored by their colony-forming abilities. To gain insight into whether p53 has a direct role in plasmid integration into the host chromosome, we determined the frequency of stable transfection with CHO cells expressing either wild-type or mutant p53 in the presence and absence of irradiation. We found that low-dose irradiation (∼50 to 100 cGy) increased stable transfection frequencies in CHO cells regardless of their p53 status. However, the increase of transfection frequency was significantly lower in CHO cells expressing wild-type p53. Our data thus suggest that wild-type p53 can suppress plasmid DNA integration into the host genome. This p53 function may play a direct and significant role in maintaining genome stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiselva E, Klein G, Telenius L, Wiman KG. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91:413–417;1994.

    PubMed  Google Scholar 

  2. Benjamin MB, Little JB. X-rays induce interallelic homologous recombination at the human thymidine kinase gene. Mol Cell Biol 12:2730–2738;1992.

    PubMed  Google Scholar 

  3. Bertrand P, Rouillard D, Boulet A, Levalois C, Soussi T, Lopez BS. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14:1117–1122;1997.

    Article  PubMed  Google Scholar 

  4. Boothman DA. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts. Radiat Res 138:s121-s125;1994.

    PubMed  Google Scholar 

  5. Brain R, Jenkins JR. Human p53 directs DNA strand reassociation and is photolabelled by 8-azido ATP. Oncogene 9:1775–1780;1994.

    PubMed  Google Scholar 

  6. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathway. Nature 362:849–852;1993.

    Article  PubMed  Google Scholar 

  7. Debatisse M, Barry M, Buttin G. Stepwise isolation and properties of unstable Chinese hamster cell variants that overproduce adenylate deaminase. Mol Cell Biol 2:1346–1353;1982.

    PubMed  Google Scholar 

  8. Dudenhoffer C, Rohaly G, Deppert W, Wiesmuller L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 18:5332–5342;1998.

    PubMed  Google Scholar 

  9. Hamlin JL, Leu T-H, Vaughn JP, Ma C, Dijkwel PA. Amplification of DNA sequences in mammalian cells. Prog Nucleic Acid Res Mol Biol 42:203–239;1991.

    Google Scholar 

  10. Iggo R, Gatter K, Bartek J, Lane D, Harris A. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679;1990.

    Article  PubMed  Google Scholar 

  11. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311;1991.

    PubMed  Google Scholar 

  12. Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Wash WV, Plunkett BS, Vogelstein B, Fornace A Jr. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597;1992.

    Article  PubMed  Google Scholar 

  13. Kessis TD, Conolly DC, Hedrick L, Cho KR. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13:427–431;1996.

    PubMed  Google Scholar 

  14. Lee H, Larner JM, Hamlin JL. Cloning and characterization of Chinese hamster p53 cDNA. Gene 184:177–183;1997.

    Article  PubMed  Google Scholar 

  15. Lee H, Larner JM, Hamlin JL. A p53-independent damage-sensing mechanism that functions as a checkpoint at the G1/S transition in Chinese hamster ovary cells. Proc Natl Acad Sci USA 94:526–531;1997.

    Article  PubMed  Google Scholar 

  16. Lee S, Cavallo L, Griffith J. Human p53 binds Holliday junctions strongly and facilitates their cleavage. J Biol Chem 272:7532–7539;1997.

    Article  PubMed  Google Scholar 

  17. Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81:1013–1020;1995.

    Article  PubMed  Google Scholar 

  18. Levine AJ, Chang ME, Silver A, Dittmer D, Wu M, Welsh D. The role of the p53 tumorsuppressor gene in tumorigenesis. Br J Cancer 69:409–416;1994.

    PubMed  Google Scholar 

  19. Little JB. Factors influencing the repair of potentially lethal radiation damage in growth-inhibited human cells. Radiat Res 56:320–333;1973.

    PubMed  Google Scholar 

  20. Livingston LR, White A, Sprouse J, Livanos E, Jacks J, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935;1992.

    Article  PubMed  Google Scholar 

  21. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849;1993.

    Article  PubMed  Google Scholar 

  22. Mallya SM, Sikpi MO. Evidence of the involvement of p53 in gamma-radiation-induced DNA repair in human lymphoblasts. Int J Radiat Biol 74:231–238;1998.

    Article  PubMed  Google Scholar 

  23. Marder BA, Morgan WF. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol 13:6667–6677;1993.

    PubMed  Google Scholar 

  24. Mdrich P. Mismatch repair genetic stability and cancer. Science 266:1959–1960;1994.

    Google Scholar 

  25. Mekeel KL, Tang W, Kachnic LA, Luo C-M, DeFrank JS, Powell SN. Inactivation of p53 results in high rates of homologous recombination. Oncogene 14:1847–1957;1997.

    Article  PubMed  Google Scholar 

  26. Milbrandt DJ, Heintz NH, White WC, Rothman SM, Hamlin JL. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc Natl Acad Sci USA 78:6043–6047;1981.

    PubMed  Google Scholar 

  27. Morgan WR, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 146:247–258;1996.

    PubMed  Google Scholar 

  28. Mummenbrauer T, Janus F, Muller B, Wiesmuller L, Deppert W, Grosse F. p53 protein exhibits 3′-to-5′ exonuclease activity. Cell 85:1089–1099;1996.

    Article  PubMed  Google Scholar 

  29. Olive PL, Banath JP, Durand PE. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the ‘comet’ assay. Radiat Res 122:86–94;1990.

    PubMed  Google Scholar 

  30. Rabbits TH. Chromosomal translocations in human cancer. Nature 372:143–149;1994.

    Article  PubMed  Google Scholar 

  31. Rouet P, Smith F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106;1994.

    PubMed  Google Scholar 

  32. Sager R, Kovac PE. Genetic analysis of tumorigenesis 1 expression of tumor forming ability in hamster hybrid cell lines. Somat Cell Mol Genet 4:375–392;1978.

    Article  Google Scholar 

  33. Stevens CW, Zeng M, Cerniglia GJ. Ionizing radiation greatly improves gene transfer efficiency in mammalian cells. Hum Gene Ther 7:1727–1734;1996.

    PubMed  Google Scholar 

  34. Sturzbecher H-W, Donzelmann B, Henning W, Knippschild U, Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 15:1992–2002;1996.

    PubMed  Google Scholar 

  35. Trask BJ, Hamlin JL. Early dihydrofolate reductase gene amplification events in CHO cells usually occur on the same chromosome arm as the original locus. Genes Dev 3:1913–1925;1989.

    PubMed  Google Scholar 

  36. Weinert T, Lyndall D. Cell cycle checkpoint genetic instability and cancer. Semin Cancer Biol 4:129–140;1993.

    PubMed  Google Scholar 

  37. Wiesmuller L, Cammenga J, Deppert WW. In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J Virol 70:737–744;1996.

    PubMed  Google Scholar 

  38. Woodworth CD, Diniger J, DiPaolo JA. Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma. J Virol 63:159–164;1989.

    PubMed  Google Scholar 

  39. Xia F, Liber HL. The tumor suppressor p53 modifies mutational processes in a human lymphoblastoid cell line. Mutat Res 373:87–97;1997.

    PubMed  Google Scholar 

  40. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl JM. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948;1992.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H., Sun, D., Larner, J.M. et al. The tumor suppressor p53 can reduce stable transfection in the presence of irradiation. J Biomed Sci 6, 285–292 (1999). https://doi.org/10.1007/BF02253570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253570

Key Words

Navigation