Skip to main content
Log in

Skin innervation and its effects on the epidermis

  • Meeting Report
  • Published:
Journal of Biomedical Science

Abstract

Sensory innervation of the skin subserves protective sensations for the body to prevent thermal and noxious injuries. Neurophysiologically, they belong to the categories of Aδ and C fibers, usually with caliber less than one µm in diameter. Morphological demonstration of the terminals of these nerves in the epidermis has been recognized recently by sensitive immunocytochemistry and an axonal marker, the protein gene product 9.5 (PGP). PGP is a ubiquitin C-terminal hydrolase, which is abundantly present in the nervous system, and particularly enriched in the unmyelinated nerves. Sensory nerves positive for PGP arise from the dorsal root ganglion, pass through the dermis, parallel the epidermis-dermis border, penetrate the basement membrane, move vertically and upwards in the epidermis with tortuous course and knobby appearance, and finally terminate at the granular layers of the epidermis. In rodents, denervation of the skin results in degeneration of epidermal nerves within 48 h of nerve transection, and thinning of the epidermis. In humans, application of this technique to evaluate disorders of the peripheral nervous system makes study of the degeneration of sensory nerve terminals possible. Patients with sensory neuropathy had fewer epidermal nerves than normal subjects, consistent with the notion of distal axonopathy. This approach has the potential to evaluate human sensory neuropathy in temporal and spatial domains. In addition, the influences of epidermal denervation open a new field to explore the interactions between sensory nerves and keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bergmann I, Priestley JV, McMahon SB, Brockes E-B, Toyka KV, Koltzenburg M. Analysis of cutaneous sensory neurons in transgenic mice lacking the low affinity neurotrophin receptor p75. Eur J Neurosci 9:18–28;1997.

    PubMed  Google Scholar 

  2. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21;1994.

    Article  PubMed  Google Scholar 

  3. de Waegh SM, Lee VM, Brady ST. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463;1992.

    Article  PubMed  Google Scholar 

  4. Doram JF, Jackson P, Kynoch PA, Thompson RJ. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40:1542–1547;1983.

    PubMed  Google Scholar 

  5. George EB, Glass JD, Griffin JW. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15:6445–6452;1995.

    PubMed  Google Scholar 

  6. Griffin JW, George EB, Hsieh S-T, Glass JD. Axonal degeneration and disorders of the axonal cytoskeleton. In: Waxman SG, Kocsis JD, Stys PK, eds. The Axon. New York, Oxford University Press, 375–390;1995.

    Google Scholar 

  7. Hedge AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER, Schwartz JH. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation inAplysia. Cell 89:115–126;1997.

    Article  PubMed  Google Scholar 

  8. Hoffman PN, Griffin JW, Price DL. Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714;1984.

    Article  PubMed  Google Scholar 

  9. Hosoi J, Murphy GF, Egan CL, Lerner EA, Grabbe S, Asahina A, Granstein RD. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363:159–163;1993.

    Article  PubMed  Google Scholar 

  10. Hsieh S-T, Choi S, Hauer P, Griffin JW, McArthur JC. Increased epidermal PGP 9.5 mRNA levels in sensory neuropathies. Ann Neurol 38:304;1995.

    Google Scholar 

  11. Hsieh S-T, Choi S, Lin W-M, Chang Y-C, McArthur JC, Griffin JW. Epidermal denervation and its effects on keratinocytes and Langerhans cells. J Neurocytol 25:513–524;1996.

    PubMed  Google Scholar 

  12. Hsieh S-T, Kidd GJ, Crawford TO, Xu Z, Lin W-M, Trapp BD, Cleveland DW, Griffin JW. Regional modulation of neurofilament organization by myelination in normal axons. J Neurosci 14:6392–6401;1994.

    PubMed  Google Scholar 

  13. Kennedy WR, Wendelschafer-Crabb G. The innervation of human epidermis. J Neurol Sci 115:184–190;1993.

    Article  PubMed  Google Scholar 

  14. Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47:1042–1048;1996.

    PubMed  Google Scholar 

  15. Kimura J. Electrodiagnosis in diseases of nerve and muscle: Principles and practice. Philadelphia, Davis, 1989.

    Google Scholar 

  16. Kruger L. The functional morphology of thin sensory axons: Some principles and problems. Prog Brain Res 113:255–272;1996.

    PubMed  Google Scholar 

  17. Kruger L, Halata Z. Structure of nociceptor ‘endings’. In: Belmonte C, Cervero F, eds. The Neurobiology of Nociceptors. New York, Oxford University Press, 37–71;1996.

    Google Scholar 

  18. Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749;1992.

    Article  PubMed  Google Scholar 

  19. McCarthy B, Hsieh S-T, Stocks EA, Hauer P, Macko C, Cornblath DR, Griffin JW, McArthur JC. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology 45:1848–1855;1995.

    PubMed  Google Scholar 

  20. Miledi R, Slater CR. On the degeneration of rat neurmuscular junctions after nerve section. J Physiol 207:507–528;1970.

    PubMed  Google Scholar 

  21. Monterio-Riviere NA, Banks YB, Birnbaum L. Laser Doppler measurements of cutaneous blood flow in ageing mice and rats. Toxicol Lett 57:329–338;1991.

    Article  PubMed  Google Scholar 

  22. Monterio-Riviere NA, Bristol DG, Manning TO, Rogers RA, Riviere JE. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Invest Dermatol 95:582–586;1990.

    Article  PubMed  Google Scholar 

  23. Nixon RA. Slow axonal transport. Curr Opin Cell Biol 4:8–14;1992.

    Article  PubMed  Google Scholar 

  24. Ochs S, Brimijoin WS. Axonal transport. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, eds. Peripheral Neuropathy. Philadelphia, Saunders, 331–360;1993.

    Google Scholar 

  25. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785;1994.

    Article  PubMed  Google Scholar 

  26. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771;1994.

    Article  PubMed  Google Scholar 

  27. Slater CR. Time course of failure of neuromuscular transmission after motor nerve section. Nature 209:305–306;1996.

    Google Scholar 

  28. Stankovic N, Johansson O, Hildebrand C. Occurrence of epidermal nerve endings in glabrous and hairy skin of the rat foot after sciatic nerve regeneration. Cell Tissue Res 284:161–166;1996.

    Article  PubMed  Google Scholar 

  29. Stocks EA, McArthur JC, Griffin JW, Mouton PR. An unbiased method for estimation of total epidermal nerve fiber length. J Neurocytol 25:637–644;1996.

    PubMed  Google Scholar 

  30. Thomas PK, Ochoa J. Clinical features and differential diagnosis. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, eds. Peripheral Neuropathy. Philadelphia, Saunders, 749–774;1993.

    Google Scholar 

  31. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J. PGP 9.5 — a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228;1983.

    Article  PubMed  Google Scholar 

  32. Wang L, Hilliges M, Jernberg T, Wiegleb-Edstronom D, Johansson O. Protein gene product 9.5-immunoreactive nerve fibers and cells in human skin. Cell Tissue Res 261:25–33;1990.

    Article  PubMed  Google Scholar 

  33. Wilson PO, Barber PC, Hamid QA, Power BF, Dhillon AP, Rode J, Day IN, Thompson RJ, Polak JM. The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies. Br J Exp Pathol 69:91–104;1988.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, ST., Lin, WM., Chiang, HY. et al. Skin innervation and its effects on the epidermis. J Biomed Sci 4, 264–268 (1997). https://doi.org/10.1007/BF02253428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253428

Key Words

Navigation