Skip to main content
Log in

Novel signaling pathways contributing to vascular changes in hypertension

  • Review
  • Published:
Journal of Biomedical Science

Abstract

In hypertension, increased peripheral resistance maintains elevated levels of arterial blood pressure. The increase in peripheral ressitance results, in part, from abnormal constrictor and dilator responses and vascular remodeling. In this review, we consider four cellular signaling pathways as possible explanations for these abnormal vascular responses: (1) augmented signaling via the epidermal growth factor receptor to cause remodeling of the cerebrovasculature; (2) reduced sphingolipid signaling leading to blunted vasodilation and increased smooth muscle proliferation; (3) increased signaling via Rho/Rho kinase leading to enhanced vasoconstriction, and (4) a relative state of microtubular depolymerization favoring vasoconstriction in hypertension. These novel cell signaling pathways provide new pharmacological targets to reduce total peripheral vascular resistance in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20469;1996.

    Google Scholar 

  2. Avila J, Nido JD. Control of microtubule polymerization and stability. Cytoskeleton 1:40–85;1995.

    Google Scholar 

  3. Bagby SP, Kirk EA, Mitchell LH, O'Reilly MM, Holden WE, Stenberg PE, Bakke AC. Proliferative synergy of ANG II and EGF in porcine aortic vascular smooth muscle cells. Am J Physiol 265:F239-F249;1993.

    Google Scholar 

  4. Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95:2266–2274;1995.

    Google Scholar 

  5. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341:197–205;1989.

    Google Scholar 

  6. Bobak DA. Clostridial toxins: Molecular probes of Rho-dependent signaling and apoptosis. Mol Cell Biochem 193:37–42;1999.

    Google Scholar 

  7. Bondjers G, Glukhara M, Hansson GK, Postnov YV, Reidy MA, Schwartz SM. Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause? Circulation 84:2–16;1991.

    Google Scholar 

  8. Boudier HA. Arteriolar and capillary remodeling in hypertension. Drugs 58:37–40;1999.

    Google Scholar 

  9. Brann AB, Scott R, Neuberger Y, Abulafia D, Boldin S, Fainzilber M, Futerman AH. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J Neuroscience 19:8199–8206;1999.

    Google Scholar 

  10. Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, Bard RH, Buhler FR. Essential hypertension: Renin and aldosterone, heart attack and stroke. N Engl J Med 286:441–449;1972.

    Google Scholar 

  11. Canessa M, Salazar G, Werner E, Vallega G, Gonzalez A. Cell growth and Na-K-Cl cotransport response of vascular smooth muscle cells in Milan rats. Hypertension 23:1022–1026;1994.

    Google Scholar 

  12. Charpie JR, Johns DG, Webb RC. Tumor necrosis factor-α inhibits human coronary artery smooth muscle cell proliferation by generation of intracellular ceramide. FASEB J 12:A39;1999.

    Google Scholar 

  13. Chatterjee S. Neutral sphingomyelinase. Adv Lipid Res 26:25–48;1993.

    Google Scholar 

  14. Chitaley K, Webb RC. Rho-kinase antagonist attenuates contraction induced by microtubule depolymerization in rat aorta. FASEB J 14:A415;2000.

    Google Scholar 

  15. Chrysant SG. Vascular remodeling: The role of angiotensin converting enzyme inhibitors. Am Heart J 135:S21-S30;1998.

    Google Scholar 

  16. Clegg KB, Sambhi MP. Inhibition of epidermal growth factor-mediated DNA synthesis by a specific tyrosine kinase inhibitor in vascular smooth muscle cells of the spontaneously hypertensive rat. J Hypertension 13:295–304;1989.

    Google Scholar 

  17. Coyle P, Heistad DD. Blood flow through cerebral and collateral vessels one month after middle cerebral artery occlusion. Stroke 18:407–411;1987.

    Google Scholar 

  18. Coyle P, Jokelainen PT. Differential outcome to middle cerebral artery occlusion in spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats. Stroke 14:605–611;1983.

    Google Scholar 

  19. Desai A, Mitchison TJ. Microtubule depolymerization dyramics. Ann Rev Cell Dev Biol 13:83–117;1997.

    Google Scholar 

  20. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523–15530;1993.

    Google Scholar 

  21. Dorrance AM, Grekin RJ. Expression of epidermal growth factor and its receptor in the cerebral vasculature. FASEB J 13:26;1999.

    Google Scholar 

  22. Downing KH, Nogales E. Tubulin structure: insights into microtubule properties and functions. Curr Opin Struct Biol 8:785–791;1998.

    Google Scholar 

  23. Duff JL, Berk BC, Corson MA. Angiotensin II stimulates the pp44 and pp42 mitogen-activated protein kinases in cultured rat aortic smooth muscle cells. Biochem Biophys Res Commun 188:257–264;1992.

    Google Scholar 

  24. Ebisui O, Dilley RJ, Li H, Funder JW, Liu J-P. Growth factors and extracellular signal-related kinase in vascular smooth muscle cells of normotensive and spontaneously hypertensive rats. J Hypertens 17:1535–1541;1999.

    Google Scholar 

  25. Eguchi S, Matsumoto T, Motley ED, Utsunomiya H, Inagami T. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21 ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase. J Biol Chem 271:14169–14175;1996.

    Google Scholar 

  26. Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y, Marumo F, Inagami T. Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273:8890–8896;1998.

    Google Scholar 

  27. Feng J, Ito M, Kureishi Y, Ichikawa K, Amano M, Isaka N, Okawa K, Iwamatsu A, Kaibuchi K, Hartshorne DJ, Nakano T. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 274:3744–3752;1999.

    Google Scholar 

  28. Ferreri NR, Zhao Y, Takizawa H, McGiff JC. Tumor necrosis factor-alpha-angiotensin interactions and regulation of blood pressure. J Hypertens 15:1481–1484;1997.

    Google Scholar 

  29. Fujihara H, Walker LA, Ming CG, Lemichez E, Boquet P, Somlyo AV, Somlyo AP. Inhibition of RhoA translocation and calcium sensitization by in vivo ADP-ribosylation with the chimeric toxin DC3B. Mol Biol Cell 8:2437–2440;1997.

    Google Scholar 

  30. Geisterfer AA, Peach MJ, Owens GL. Angiotensin II induces hypertrophy, not hyperplasia of cultured rat aortic smooth muscle cells. Circ Res 62:749–756;1988.

    Google Scholar 

  31. Giasson E, Meloche S. Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J Biol Chem 270:5225–5231;1995.

    Google Scholar 

  32. Gibbons GH, Pratt RE, Dzau VJ. Vascular smooth muscle cell hypertrophy vs. hyperplasia: Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461;1992.

    Google Scholar 

  33. Gong MC, Fujihara H, Somlyo AV, Somlyo AP. Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 272:10704–10709;1997.

    Google Scholar 

  34. Gong MC, Fujihara H, Walker LA, Somlyo AV, Somlyo AP. Down-regulation of G-protein-mediated Ca2+ sensitization in smooth muscle. Mol Biol Cell 8:279–286;1997.

    Google Scholar 

  35. Gong MC, Iizuka K, Nixon G, Browne JP, Hall A, Eccleston JF, Sugai M, Kobayashi S, Somlyo AV, Somlyo AP. Role of guanine nucleotide-binding proteins — ras-family or trimeric proteins or both — in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci USA 93:1340–1345;1996.

    Google Scholar 

  36. Goodfriend TL, Elliott ME, Catt KJ. Drug therapy: Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654;1996.

    Google Scholar 

  37. Gosser YQ, Nomanbhoy TK, Aghazadeh B, Manor D, Combs C, Cerione RA, Rosen MK. C-terminal binding domain of Rho GDP-dissociation inhibitor directs N-terminal inhibitory peptide to GTPases. Nature 387:814–819;1997.

    Google Scholar 

  38. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94;1999.

    Google Scholar 

  39. Guo DF, Inagami T. Epidermal growth factor-enhanced human angiotensin II type 1 receptor. Hypertension 23:1032–1035;1994.

    Google Scholar 

  40. Hannun Y. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128;1994.

    Google Scholar 

  41. Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243:500–507;1989.

    Google Scholar 

  42. Hannun YA, Linardic CM. Sphingolipid breakdown products: Anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta 1154:3223–3236;1993.

    Google Scholar 

  43. Hoebeke J, Van Nijen G, De Brabander M. Interaction of nocodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun 69:319–324;1976.

    Google Scholar 

  44. Huwiler A, Fabbro D, Pfeilschifter J. Selective ceramide binding to protein kinase C-alpha and delta isoenzymes in renal mesangial cells. Biochemistry 37:14556–14562;1998.

    Google Scholar 

  45. Ishibashi Y, Tsutsui H, Yamamoto S, Takahashi M, Imanaka-Yoshida K, Yoshida T, Urabe Y, Sugimashi M, Takeshida A. Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in the rat. Am J Physiol 271:H1978-H1987;1996.

    Google Scholar 

  46. Izzo JL, Black HR. Hypertension Primer. The Essential of High Blood Pressure, ed 2. American Heart Association, 1999.

  47. Jiang J, Sun CW, Alonso-Galicia M, Roman RJ. Lovastatin reduces renal vascular reactivity in spontaneously hypertensive rats. Am J Hypertens 11:1222–1231;1998.

    Google Scholar 

  48. Johns DG, Charpie JR, Webb RC. Impaired ceramide signaling in SHR vascular smooth muscle: A possible mechanism for increased cell proliferation. Submitted for publication, 2000.

  49. Johns DG, Jin J-S, Wilde DW, Webb RC. Ceramide-induced vasorelaxation: An inhibitory action on protein kinase C. Gen Pharmacol 33:415–421;1999.

    Google Scholar 

  50. Johns DG, Osborn HO, Webb RC. Ceramide: A novel cell signaling mechanism for vasodilation. Biochem Biophys Res Commun. 237:95–97;1997.

    Google Scholar 

  51. Johns DG, Webb RC. TNF-alpha-induced endothelium-independent vasodilation: A role for phospholipase A2-dependent ceramide signaling. Am J Physiol 275:H1592-H1598;1998.

    Google Scholar 

  52. Jones MJ, AW Murray. Evidence that ceramide selectively inhibits protein kinase C-α translocation and modulates bradykinin activation of phospholipase D. J Biol Chem 270:5007–5013;1995.

    Google Scholar 

  53. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248;1996.

    Google Scholar 

  54. Kolodney MS, Elson EL. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci USA 92:10252–10256;1995.

    Google Scholar 

  55. Kureishi Y, Kobayashi S, Amano M, Kumura K, Kanaide H, Nakano T, Kaibuchi K, Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260;1997.

    Google Scholar 

  56. Lee JY, Hannun YA, Obeid LM. Ceramide inactivates protein kinase C-alpha. J Biol Chem 271:13169–13174;1996.

    Google Scholar 

  57. Lehtonen JKA, Horiuchi M, Daviet L, Akishita M, Dzau VJ. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem 274:16901–16906;1999.

    Google Scholar 

  58. Leite R, Webb RC. Microtubule disruption potentiates phenylephrine-induced vasoconstriction in rat mesenteric arterial bed. Eur J Pharmacol 351:R1-R3;1998.

    Google Scholar 

  59. Li P-L, Zhang DX, Zou A-P, Campbell WB. Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension 33:1441–1446;1999.

    Google Scholar 

  60. Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, Shyy JY, Chien S. Distinct roles for the small GTPase Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest 103:1141–1450;1999.

    Google Scholar 

  61. Liu B, Chrzanowska-Wodnicka M, Burridge K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein rho. Cell Adhes Comm 5:249–255;1998.

    Google Scholar 

  62. Liu B, Hannun YA. Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16281–16287;1977.

    Google Scholar 

  63. MacLeod AB, Vasdev S, Smeda J. The role of blood pressure and aldosterone in the production of hemorrhagic stroke in captopril-treated hypertensive rats. Stroke 28:1821–1828;1997.

    Google Scholar 

  64. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension. Hypertension 34:724–728;1999.

    Google Scholar 

  65. Merrill AH, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E. Sphingolipids — the enigmatic lipid class: Biochemistry, physiology, and pathophysiology. Toxicol Appl Pharm 142:208–225;1997.

    Google Scholar 

  66. Mulvany MJ, Baumbach GL, Aalkjaer C, Heagerty AM, Korsgaard N, Schiffrin EL, Heistad DD. Vascular remodeling. Hypertension 28:505–506;1996.

    Google Scholar 

  67. Naftilan AJ, Gilliland GK, Eldridge CS, Kraft AS. Induction of the proto-oncogene c-jun by angiotensin II. Mol Cell Biol 10:5536–5540;1990.

    Google Scholar 

  68. Naftilan AJ, Pratt RE, Dzau VJ. Induction of platelet-derived growth factor A-chain and c-myc gene expression by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 83:1419–1424;1989.

    Google Scholar 

  69. Nara F, Tanaka M, Masuda-Inoue S, Yamasoto Y, Doi-Yoshioka H, Suzuki-Konagai K, Kumakura S, Ogita T. Biological activities of scyphostatin, a neutral sphingomyelinase inhibitor from a discomycete,Trichopeziza mollissima. J Antibiot 52:531–535;1999.

    Google Scholar 

  70. Nickenig G, Murphy TJ. Down-regulation by growth factors of vascular smooth muscle angiotensin receptor gene expression. Mol Pharmacol 46:653–659;1994.

    Google Scholar 

  71. Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 259:1769–1771;1993.

    Google Scholar 

  72. Okamoto K, Yamori Y, Nagaoka A. Establishment of the stroke-prone spontaneously hypertensive rats (SHR). Circ Res 34–35 (suppl):142–153;1974.

    Google Scholar 

  73. Pfitzer G, Arner A. Involvement of small GTPases in the regulation of smooth muscle contraction. Acta Physiol Scand 164:449–456;1998.

    Google Scholar 

  74. Platts SH, Falcone JC, Holton WT, Hill MA, Meininger GA: Alteration of microtubule polymerization modulates arteriolar vasomotor tone. Am J Physiol 277:H100-H106;1999.

    Google Scholar 

  75. Pyne S, Pyne NJ. The differential regulation of cyclic AMP by sphingomyelin-derived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem J 315:917–923;1996.

    Google Scholar 

  76. Romero JC, Reckelhoff JF. Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34:943–949;1999.

    Google Scholar 

  77. Rowinsky EK, Cazenave LA, Donehower RC. Taxol: A novel investigational antimicrotubule agent. J Natl Cancer Inst 82:1247–1259;1990.

    Google Scholar 

  78. Saltis J, Agrotis A, Bobik A. Differences in growth characteristics of vascular smooth muscle from spontaneously hypertensive and Wistar-Kyoto rats are growth factor dependent. J Hypertension 11:629–637;1993.

    Google Scholar 

  79. Saltis J, Thomas AC, Agrotis A, Campbell JH, Campbell GR, Bobik A. Expression of growth factor receptors on arterial smooth muscle cells: Dependency on cell phenotype and serum factors. Atherosclerosis 118:77–87;1995.

    Google Scholar 

  80. Sambhi MP, Swaminathan N, Wang H, Rong H. Increased EGF binding and EGFR mRNA expression in rat aorta with chronic administration of pressor angiotensin II. Biochem Med Metabol Biol 48:8–18;1992.

    Google Scholar 

  81. Scott-Burden T, Resink TJ, Baur U, Burgin M, Buhler FR. Epidermal growth factor responsiveness in smooth muscle cells from hypertensive and normotensive rats. Hypertension 13:295–304;1989.

    Google Scholar 

  82. Seasholtz TM, Majumdar M, Kaplan DD, Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res 84:1186–1193;1999.

    Google Scholar 

  83. Shayman JA. Sphingolipids: Their role in intracellular signaling and renal growth. J Am Soc Nephrol 7:171–182;1996.

    Google Scholar 

  84. Sheridan BC, McIntyre RC Jr, Meldrum DR, Cleveland JC Jr, Agrafojo J, Banerjee A, Harken AH, Fullerton DA: Microtubules regulate pulmonary vascular smooth muscle contraction. J Surgical Res 62:284–287;1996.

    Google Scholar 

  85. Somlyo AP, Wu X, Walker LA, Somlyo AV. Pharmacomechanical coupling: The role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 134:210–234;1999.

    Google Scholar 

  86. Spence MW. Sphingomyelinases. Adv Lipid Res 26:3–23;1993.

    Google Scholar 

  87. Stehbens WE, Lie JT (eds): Vascular Pathology. London, Chapman & Hall Medical, 1995.

    Google Scholar 

  88. Stewart PM. Mineralocorticoid hypertension. Lancet 353:1341–1347;1999.

    Google Scholar 

  89. Stouffer GA, Owens GK. Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-β. Circ Res 70:820–828;1992.

    Google Scholar 

  90. Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper G. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 82:751–761;1998.

    Google Scholar 

  91. Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle: Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 264:526–530;1989.

    Google Scholar 

  92. Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W. Cloned mammalian neutral sphingomyelinase: Functions in sphingolipid signaling? Proc Natl Acad Sci USA 95:3638–3643;1998.

    Google Scholar 

  93. Tsuda T, Kawahara Y, Ishida Y, Koide M, Shii K, Yokoyama M. Angiotensin II stimulates two myelin basic protein/microtubule-associated protein 2 kinases in cultured vascular smooth muscle cells. Circ Res 71:620–630;1992.

    Google Scholar 

  94. Tsutsui H, Tagawa H, Kent RL, McCollam PL, Ishihara K, Nagatsu M, Cooper G. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation 90:533–555;1994.

    Google Scholar 

  95. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by Rho-associated protein kinase in hypertension. Nature 389:990–994;1996.

    Google Scholar 

  96. Ullian ME, Raymond JR, Willingham MC, Paul RV. Regulation of vascular angiotensin II receptors by EGF. Am J Physiol 273:C1241-C1249;1997.

    Google Scholar 

  97. Weber DS, Webb RC. Potentiated relaxation to the Rho-associated kinase inhibitor Y-27632 in mesenteric arteries from mineralocorticoid hypertensive rats. Submitted for publication, 2000.

  98. Weber H, Taylor DS, Molloy CJ. Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells: correlation with the expression of specific endogenous growth factors and reversal by suramin. J Clin Invest 93:788–798;1994.

    Google Scholar 

  99. Yamakawa T, Tanaka S, Numaguchi K, Yamakawa Y, Motley ED, Ichihara S, Inagami T. Involvement of rho-kinase in angiotensin II-induced hypertrophy of rat vascular smooth muscle cells. Hypertension 35:313–318;2000.

    Google Scholar 

  100. Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two-clip renovascular hypertensive rats. Stroke 29:1708–1714;1998.

    Google Scholar 

  101. Zheng, Li W, Altura BT, Altura BM. C2-ceramide attenuates prostaglandin F2-alpha-induced vasoconstriction and elevation of [Ca2+] in canine cerebral vascular smooth muscle. Lipids 34:689–695;1999.

    Google Scholar 

  102. Zheng T, Li W, Wang J, Altura BT, Altura BM. C2-ceramide attenuates phenylephrine-induced vasoconstriction and elevation in [Ca2+] in rat aortic smooth muscle. Lipids 37:689–695;1999.

    Google Scholar 

  103. Zicha J, Kunes J. Ontogenetic aspects of hypertension development: Analysis in the rat. Physiol Rev 79:1227–1282;1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johns, D.G., Dorrance, A.M., Leite, R. et al. Novel signaling pathways contributing to vascular changes in hypertension. J Biomed Sci 7, 431–443 (2000). https://doi.org/10.1007/BF02253359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253359

Key Words

Navigation