Skip to main content
Log in

Generation and processing of peripheral temperature signals in mammals

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Temperature transduction in peripheral cold receptors and processing of peripheral temperature signals in the spinal cord were studied in cats and rats. The temperature dependence of the generator potential is attributed to different temperature coefficients of an electrogenic Na-efflux and the passive Na-influx. Cold receptor activity and particularly its bursting pattern is considerably modulated by the local Ca-concentration, but the effect of elevated Ca-concentration is abolished by the ATPase blocker ouabain. — The peripheral temperature signals from the scrotal skin of rats are transformed in dorsal horn neurones (DHN) into temperature reactions, which occur only above (warm reaction) or below (cold reaction) a certain temperature threshold and are limited to an operational range of 1–4°C. Convergency of different temperature inputs were observed in one and the same DHN. Supraspinal control of temperature reactive DHN appears to be complex but predominantly excitatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BARKER, J. F., and GAINER, H., (1975): Studies in bursting pacemaker potential in molluscan neurons. II. Regulation by divalent cations. Brain Res., 84: 479–500.

    Google Scholar 

  • CARPENTER, D. O., (1970): Membrane potential produced directly by the Na+-pump in Aplysia neurons. Comp. Biochem. Physiol., 75: 371–385.

    Google Scholar 

  • CROMPTON, M. MOSER., R. LÜDI, H., and CARAFOLI, E., (1978): The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur. J. Biochem., 82, 25–31.

    Google Scholar 

  • ECKERT, R., and LUX, H. D., (1976): A voltage-sensitive persistent calcium conductance in neuronal somata of Helix. J. Physiol. (Lond.), 254: 129–151.

    Google Scholar 

  • GORMAN, A. L. F., and MARMOR, M. F., (1970a): Contributions of the sodium pump ionic gradients to the membrane potential of a moluscan neurone. J. Physiol. (Lond.), 210: 897–917.

    Google Scholar 

  • GORMAN, A. L. F., and MARMOR, M. F., (1970b): Temperature dependence of the sodium-potassium permeability ratio of a molluscan neurone. J. Physiol. (Lond.), 210: 918–931.

    Google Scholar 

  • HELLON, R. F., and MITCHELL, D., (1975): Convergence in a thermal afferent pathway in the rat. J. Physiol. (Lond.), 248: 359–376.

    Google Scholar 

  • HELLON, R. F., and MISRA, N. K. (1973): Neurones in the dorsal horn of the rat responding to scrotal skin temperature changes. J. Physiol. (Lond.), 232: 375–388.

    Google Scholar 

  • HELLON, R. F., HENSEL, H., and SCHÄFER, K. (1975): Thermal receptors in the scrotum of the rat. J. Physiol. (Lond.), 248: 349–357.

    Google Scholar 

  • HENSEL, H., (1952): Physiologie der Thermorezeption. Ergebn. Physiol., 47: 166–368.

    Google Scholar 

  • HENSEL, H., and SCHÄFER, K., (1974): Effects of calcium on warm and cold receptors. Pflügers Arch. ges. Physiol., 352: 87–90.

    Google Scholar 

  • HENSEL, H. und ZOTTERMAN, Y., (1951): Quantitative Beziehungen zwischen der Entladung einzelner Kältefasern und der Temperatur. Acta physiol. scand., 23: 291–319.

    Google Scholar 

  • HOFMEIER, G., and LUX, H. D., (1978): Investigations on two calcium dependent potassium currents in Helix neurons by means of calcium-sensitive microelectrodes. Neuroscience letters, Suppl., 1: S77.

  • IGGO, A., and YOUNG, D. W., (1975): In: The Somatosensory System. H. H. Kornhuber (ed.), Thieme, Stuttgart, 5–25.

  • NEYA, T., and PIERAU, Fr.-K., (1975): Dorsal horn cell activity to thermal stimulation of rat's scrotal skin. Pflügers Arch. ges. Physiol., 359: R97.

  • PIERAU, Fr.-K., TORREY, P., and CARPENTER, D. O. (1974): Mammalian cold receptor afferents: role of an electrogenic sodium pump in sensory transduction. Brain. Res., 73: 156–160.

    Google Scholar 

  • PIERAU, Fr.-K., TORREY, P., and CARPENTER, D. O. (1975a): Effect of ouabain and potassium-free solution on mammalian thermosensitive afferents in vitro. Pflügers Arch. ges. Physiol., 359: 349–356.

    Google Scholar 

  • PIERAU, Fr.-K., TORREY, P., and CARPENTER, D. O. (1975b): Afferent nerve fiber activity responding to temperature changes of scrotal skin of the rat. J. Neurophysiol., 38: 601–612.

    Google Scholar 

  • PIERAU, Fr.-K., and WURSTER, R. D. (1975): Effects of ouabain and calcium on temperature responses of the cat tongue. Pflügers Arch. ges. Physiol., 359: R97.

  • TSUCHIYA, K., and PIERAU, Fr.-K. (1978): Discharge pattern of temperature-reactive dorsal horn neurones during reversible spinalization in rats. Pflügers Arch. ges. Physiol., 373: R68.

  • WURSTER, R. D., and PIERAU, Fr.-K. (1976): Coding patterns of lingual thermo-receptors in the cat. Neuroscience Abstr., Vol. II, 1387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierau, F.K., Wurster, R.D., Neya, T. et al. Generation and processing of peripheral temperature signals in mammals. Int J Biometeorol 24, 243–252 (1980). https://doi.org/10.1007/BF02249793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02249793

Keywords

Navigation