Skip to main content
Log in

The climatology of the lower stratosphere during the IGY and its implications for the regime of circulation

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

Three-monthly mean statistics, show that throughout the year in the layer between about 200 and 30 mb large-scale eddies transport both heat and momentum against the north-south gradient of, respectively, the temperature and the angular rotation. Furthermore, it is found that in this layer, warm air masses tend to sink and cold air masses tend to rise, thereby converting kinetic into potential energy. The eddy circulations have, therefore, no source of energyin situ and must be forced by the circulation systems in the adjacent layers, probably in the troposphere. A comparison is drawn between the transport of angular momentum and heat by transient eddies in the lower troposphere, the upper troposphere and the lower stratosphere. Finally, the necessary sloping of the trajectories of the forced air parcels is discussed.

Zusammenfassung

Dreimonatige Durchschnitts-Statistiken zeigen, daß während des Jahres großräumige Wirbel in den Schichten zwischen ungefähr 200 und 30 mb Wärme und Bewegungsgröße gegen den Gradienten der Temperatur beziehungsweise der Winkelrotation transportieren. Ferner, wurde festgestellt, daß in diesen Schichten warme Luftmassen die Neigung haben abzusinken und kalte Luftmassen aufzusteigen und daß auf diese Art kinetische Energie in potentielle Energie umgewandelt wird. Die Wirbel-Zirkulation hat daher in sich keine Energiequelle und muß durch die Zirkulationssysteme in den anliegenden Schichten, vermutlich in der Troposphäre, angetrieben werden. Es wird ein Vergleich zwischen dem Transport von Drehimpuls und Wärme von wandernden Wirbeln in der unteren Troposphäre, der oberen Troposphäre und der unteren Stratosphäre angestellt. Schließlich wird die für das Zustandekommen der erzwungenen Bewegungen erforderliche Neigung der Trajektorien diskutiert.

Résumé

En se basant sur des statistiques tri-mensuelles on montre que tout au long de l'année, dans la couche entre 200 et 30 mb environ, les perturbations à grande échelle transportent à la fois chaleur et quantité de mouvement contre le gradient de la température et de la rotation angulaire. En outre, on a trouvé que dans cette couche les masses d'air chaud ont la tendance à descendre et les masses d'air froid ont la tendance à monter, en transformant de cette manière l'énergie cinétique en énergie potentielle. Par conséquent, les circulations perturbées n'ont pas disponible de source d'énergie et doivent être, forcées par des systèmes de circulation dans des couches adjacentes, probablement dans la troposphère. On compare le transport du moment cinétique et de la chaleur par des perturbations transitoires dans la basse troposphère, la haute troposphère et la basse stratosphère. Einfin on discute la pente des trajectoires des parcelles d'air forcées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin, J. M., andL. Krawitz: 50-Millibar Patterns and Their Relationship to Tropospheric Changes. J. Met.13, 152–159 (1956).

    Google Scholar 

  2. Barnes, A. A., Jr.: Kinetic and Potential Energy between 100 mb and 10 mb during the First Six Months of the IGY. Final Rep., Contract No. AF 19 (604)-5223, Planetary Circulations Project, Dept. of Met., Mass. Inst. of Tech., 8–131 (1963).

  3. Boville, B. W.: A Dynamical Study of the 1958–59 Stratospheric Polar Vortex. Sci. Rep. No. 9, Contract No. AF 19 (604)-3865, Arctic Met. Res. Group, Dept. of Met., McGill University, Montreal (1961).

    Google Scholar 

  4. Brewer, A. W.: Evidence for a World Circulation Provided by the Measurements of Helium and Water Vapour Distribution in the Stratosphere. Quart. J. Roy. Met. Soc.75, 351–363 (1949).

    Google Scholar 

  5. Buch, H. S.: Hemispheric Wind Conditions during the Year 1950. Final Rep., Part 2, Contract No. AF 19-122-153, General Circulation Project, Dept. of Met., Mass. Inst. of Tech. (1954).

  6. Eady, E. T.: The Cause of the General Circulation of the Atmosphere. Cent. Proc. Roy. Met. Soc. 156–172 (1950).

  7. Gilman, P. A.: Indirect Measurement of the Mean Meridional Circulation in the Southern Hemisphere. Sci. Rep. No. 3, Contract No. AF 19 (628)-2408, Planetary Circulations Project, Dept. of Met., Mass. Inst. of Tech. (1963).

  8. Green, J. S. A.: A Problem in Baroclinic Stability. Quart. J. Roy. Met. Soc.86, 237–251 (1960).

    Google Scholar 

  9. Hadley, G.: Concerning the Cause of the General Trade Winds. Phil. Trans.39 (1735) (reprinted in “The Mechanics of the Earth's Atmosphere” byC. Abbe, Smithson. Misc. Coll.51, 1910).

  10. Hering, W. S.: Analysis of Ozonosonde Observations, over North America (in press) (1963).

  11. Houghton, H. G.: On the Annual Heat Balance of the Northern Hemisphere. J. Met.11, 1–9 (1954).

    Google Scholar 

  12. Kuo, H. L.: Energy-Releasing Processes and Stability of Thermally Driven Motions in a Rotation Fluid. J. Met.13, 82–101 (1956).

    Google Scholar 

  13. Kuo, H. L.: Forced and Free Meridional Circulations in the Atmosphere. J. Met.13, 561–568 (1956).

    Google Scholar 

  14. London, J.: A Study of the Atmospheric Heat Balance. Final Rep., Contract No. AF 19 (122)-165, Dept. of Met. and Ocean., New York Univ. (1957).

  15. Martin, D. W.: Contribution to the Study of Atmospheric Ozone. Sci. Rep. No. 6, Contract No. AF (604)-1000, General Circulation Project, Dept. of Met., Mass. Inst. of Tech. (1956).

  16. Molla, A. C., andC. J. Loisel: On the Hemispheric Correlations of Vertical and Meridional Wind Components. Geofisica pura e appl.51, 166–170 (1962).

    Google Scholar 

  17. Murakami, T.: Stratospheric Wind Temperature and Isobaric Height Conditions during the IGY period, Part I. Sci. Rep. No. 5, Contract No. AF 19 (604)-5223, Planetary Circulations Project, Dept. of Met., Mass. Inst. of Tech. (1962).

  18. Newell, R. E.: The Transport of Trace Substances in the Atmosphere and their Implications for the General Circulation of the Stratosphere. Geofisica pura e appl.49, 137–158 (1961).

    Google Scholar 

  19. Newell, R. E.: Preliminary Study of Quasi-Horizontal Eddy Fluxes from Meteorological Rocket Network Data. J. Atmos. Sci.20, 213–225 (1963).

    Google Scholar 

  20. Oort, A. H.: Direct Measurement of the Meridional Circulation in the Stratosphere during the IGY. Arch. Met. Geoph. Biokl. A14, 131–148 (1964).

    Google Scholar 

  21. Oort, A. H.: On the Energy Cycle in the Lower Stratosphere. Rep. No. 9, Planetary Circulations Project, Dept. of Met., Mass. Inst. of Tech. (1963).

  22. Peixoto, J. P.: Contribuição para o Estudo dos Campos Médios da Distribuição e do Fluxo Meridional da Entalpia na Atmosfera. Prize Essay Portuguese Academy of Science (1959).

  23. Peixoto, J. P.: Hemispheric Temperature Conditions during the Year 1950. Sci. Rep. No. 4, Contract No. AF 19 (604)-6108. Planetary Circulations Project, Dept. of Met., Mass. Inst. of Tech. (1960).

  24. Peng, L.: Stratospheric Wind Temperature and Isobaric Height Conditions during the IGY Period, Part II (in press) (1964).

  25. Reed, R. J., W. J. Campbell, L. A. Rasmussen andD. G. Rogers: Evidence of a Downward-Propagating, Annual Wind Reversal in the Equatorial Stratosphere. J. Geophys. Res.66, 813–818 (1961).

    Google Scholar 

  26. Reed, R. J., andD. G. Rogers: The Circulation of the Tropical Stratosphere in the Years 1954–1960. J. Atmos. Sci.19, 127–135 (1962).

    Google Scholar 

  27. Reed, R. J., J. L. Wolfe andH. Nishimoto: A Spectral Analysis of the Energetics of the Stratospheric Sudden Warming of early 1957. J. Atmos. Sci.20, 256–275 (1963).

    Google Scholar 

  28. Saltzman, B., andA. Fleisher: Spectrum of Kinetic Energy Transfer Due to Large-Scale Horizontal Reynolds Stresses. Tellus12, 110, 111 (1960).

    Google Scholar 

  29. Scherhag, R.: Die explosionsartigen Stratosphärenerwärmungen des Spätwinters 1951–52. Ber. Dtsch. Wetterd. U. S. Zone6, 51–63 (1952).

    Google Scholar 

  30. Starr, V. P.: Note Concerning the Nature of the Large-Scale Eddies in the Atmosphere. Tellus5, 494–498 (1953).

    Google Scholar 

  31. Starr, V. P.: Questions Concerning the Energy of Stratospheric Motions. Arch. Met. Geoph. Biokl. A12, 1–7 (1960).

    Google Scholar 

  32. Starr, V. P., andJ. M. Wallace: Mechanics of the Eddy Processes in the Tropical Troposphere. Pure Appl. Geophys.58, 138–144 (1964).

    Google Scholar 

  33. Starr, V. P., andR. M. White: Balance Requirements of the General Circulation. Geophys. Res. Papers No. 35 (1954).

  34. White, R. M.: The Counter-Gradient Flux of Sensible Heat in the Lower Stratosphere. Tellus6, 177–179 (1954).

    Google Scholar 

  35. White, R. M., andG. F. Nolan: A Preliminary Study of the Potential to Kinetic Energy Conversion Process in the Stratosphere. Tellus12, 145–148 (1960).

    Google Scholar 

  36. Wiin-Nielsen, A.: A Study of Energy Conversion and Meridional Circulation for the Large-Scale Motion in the Atmosphere. Monthly Weather Rev.87, 319–332 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

The research reported in this paper was sponsored principally by the Atomic Energy Commission under Contract No. AT(30-1)2241; before March 1962, the research was supported jointly by the Atomic Energy Commission and the U.S. Air Force under Contracts No. AT(30-1)2241 and AF 19(604)-5223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oort, A.H. The climatology of the lower stratosphere during the IGY and its implications for the regime of circulation. Arch. Met. Geoph. Biokl. A. 14, 243–278 (1965). https://doi.org/10.1007/BF02247563

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247563

Keywords

Navigation