Skip to main content
Log in

Optimal algorithms for some intersection radius problems

Optimale Algorithmen für den Durchschnitts-Radius

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The intersection radius of a set ofn geometrical objects in ad-dimensional Euclidean space,E d, is the radius of the smallest closed hypersphere that intersects all the objects of the set. In this paper, we describe optimal algorithms for some intersection radius problems. We first present a linear-time algorithm to determine the smallest closed hypersphere that intersects a set of hyperplanes inE d, assumingd to be a fixed parameter. This is done by reducing the problem to a linear programming problem in a (d+1)-dimensional space, involving 2n linear constraints. We also show how the prune-and-search technique, coupled with the strategy of replacing a ray by a point or a line can be used to solve, in linear time, the intersection radius problem for a set ofn line segments in the plane. Currently, no algorithms are known that solve these intersection radius problems within the same time bounds.

Zusammenfassung

Wir bezeichnen als Radius des Durchschnitts einer Menge vonn geometrischen Objekten imd-dimensionalen Euklidischen RaumE d Radius der kleinsten abgeschlossenen Hyperkugel, welche einen nichtleeren Durchschnitt mit allen Objekten besitzt. In der vorliegenden Arbeit beschreiben wir optimale Algorithmen zuer Bestimmung einiger solcher Radien. Zuerst stellen wir einen Algorithmus mit linearem Zeitbedarf vor, wenn die Objekte Hyperebenen inE d mit festemd sind. Er beruht auf der Reduktion des Problems auf eine (d+1)-dimensionale Lineare Optimierungsaufgabe mit 2n linearen Nebenbedingungen. Wir beschreiben auch die Lösung des Durchschnitts-Radius Problems fürn Strecken in der Ebene. Dazu benutzen wir neben Breitensuche die Ersetzung von Halbstrahlen durch Punkte oder Gerade. Bisher waren keine Algorithmen bekannt, welche diese Probleme in den gleichen Zeitschranken lösen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharya, B. K., Czyzowicz, J., Egyed, P., Toussaint, G., Stojmenovic, I., Urrutia, J.: Computing shortest transversals of set. In: Proc. of the Seventh Annual ACM Symp. on Computational Geometry, pp. 71–80, 1991.

  2. Brown K. Q.: Fast intersection of half spaces. Technical Report CMU-CS-78-129, Carnegie Mellon University, Pittsburg, 1978.

    Google Scholar 

  3. Bhattacharya, B. K., Toussaint, G. T.: Computing shortest transversals. Technical Report SOCS 90.6, McGill University, April 1990.

  4. Chrystal, G.: On the problem to construct the minimum circle enclosingn given points in the plane. In: Proc. Edinberg Math. Soc.,3, 30–33 (1885).

  5. Clarkson, K. L.: Linear programming inO(3(k+1) 2) time. Informa. Proc. Lett.22, 21–24 (1986).

    Google Scholar 

  6. Dyer, M. E.: Linear-time algorithm for two- and three-variable linear programs. SIAM J. Computing13, 31–45 (1984).

    Google Scholar 

  7. Dyer, M. E.: On a multidimensional search technique and its application to the Euclidean 1-center problem. SIAM J. Computing15, 725–738 (1986).

    Google Scholar 

  8. Goodrich, M. T., Snoeyink, J. S.: Stabbing parallel segments with a convex polygon. In: Dehne, F., Sack, J. R., Santaroo, N. (eds) Proc. of the Workshop on Algorithms and Data Structures, pp. 231–242. Berlin Heidelberg New York Tokyo: Springer 1989 (Lecture Notes in Computer Science vol. 382).

    Google Scholar 

  9. Hadwiger, H., Debrunner, H., Klee, V.: Combinatorial geometry in the plane. Toronto: Holt, Rinehart and Winston, 1964.

    Google Scholar 

  10. Houle, M. E., Imai, H., Imai, K., Robert, J. M.: Weighted orthogonal linearL -approximation and applications. In: Dehne, F., Sack, J. R., Santaroo, N. (eds) Proc. of the Workshop on Algorithms and Data Structures, pp. 183–191. Berlin Heidelberg New York Tokyo: Springer 1989 (Lecture Notes in Computer Science, vol. 382).

    Google Scholar 

  11. Megiddo, N.: Linear-time algorithms for linar programming inR 3 and related problems. SIAM J. Computing12, 759–776 (1983).

    Google Scholar 

  12. Megiddo, N.: Linear programming in linear time when the dimension is fixed. JACM31, 114–127 (1984).

    Google Scholar 

  13. Meijer, H., Rappaport, D.: Minimum polygon covers of parallel line segments. Technical Report CISC 90-279, Queen's University, Canada, 1990.

    Google Scholar 

  14. Seidel, R.: Linear programming and convex hull made easy. In: Proc. of the Sixth Annual ACM Symp. on Computational Geometry, pp. 211–215, 1990.

  15. Shamos, M. I.: Computational Geometry. PhD thesis, Department of Computer Science, 1978.

  16. Sylvester, J. J.: A question in the geometry situation. Q. J. Pure Appl. Math.1, 79 (1857).

    Google Scholar 

  17. Sylvester, J. J.: On Poncelet's approximate linear valuation of the surd forms. Phil. Mag.20, 203–222 (1860).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, B.K., Jadhav, S., Mukhopadhyay, A. et al. Optimal algorithms for some intersection radius problems. Computing 52, 269–279 (1994). https://doi.org/10.1007/BF02246508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246508

AMS Subject Classifications

Key words

Navigation