Skip to main content
Log in

Central versus peripheral effects of muscarinic antagonists: the limitations of quaternary ammonium derivatives

  • Letter To The Editors
  • Published:
Psychopharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albanus L (1970) Central and peripheral effects of anticholinergic compounds. Acta Pharmacol Toxicol 28:305–326

    Google Scholar 

  • Albanus L, Sundwall A, Winbladh B (1969) Cerebrospinal fluid distribution of methylatropine. Life Sci 8:483–486

    Article  PubMed  Google Scholar 

  • Aquilonius SM, Lundholm B, Winbladh B (1972) Effects of some anticholinergic drugs on cortical acetylcholine release and motor activity in rats. Eur J Pharmacol 20:224–230

    Article  PubMed  Google Scholar 

  • Ashgar K, Roth LJ (1971) Entry and distribution of hexamethonium in the central nervous system. Biochem Pharmacol 20:2787

    Article  PubMed  Google Scholar 

  • Beneviste H, Hüttemeier PC (1990) Microdialysis-theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  Google Scholar 

  • Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 5:685–700

    Article  Google Scholar 

  • Carlton PL (1962) Some behavioral effects of atropine and methyl atropine. Psychol Rep 10:579–589

    Google Scholar 

  • Carlton PL, Didamo P (1961) Augmentation of behavioral effects of amphetamine by atropine. J Pharmacol Exp Ther 134:364–376

    Google Scholar 

  • Dudchenko P, Sarter M (1992) Behavioral microanalysis of spatial delayed alternation performance: rehearsal through overt behavior, and effects of scopolamine and chlordiazepoxide. Psychopharmacology 107:263–270

    PubMed  Google Scholar 

  • Elsmore TF, Parkinson JK, Leu JR, Witkin JM (1989) Atropine effects on delayed discrimination performance of rats. Pharmacol Biochem Behav 32:971–975

    Article  PubMed  Google Scholar 

  • Hamberger A, Berthold CH, Karlsson B, Lehmann A, Nyström B (1983) Extracellular GABA, glutamate and glutamine in vivo — perfusion-dialysis of the rabbit hippocampus. In: Hertz L, Kvamme E, McGeer EG, Schousboe A (eds) Glutamine, glutamate and GABA in the central nervous system. A. R. Liss, New York, pp 473–492

    Google Scholar 

  • Harvey JA, Gormezano I, Cool-Hauser VA (1983) Effects of scopolamine and methylscopolamine on classical conditioning of the rabbit nictitating membrane response. J Pharmacol Exp Ther 225:42–49

    PubMed  Google Scholar 

  • Innes IR, Nickerson M (1975) Atropine, scopolamine, and related antimuscarinic drugs. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics. Macmillan, New York, pp 514–532

    Google Scholar 

  • Levine RR (1959) Presence of certain onium compounds in brain tissue following intravenous administration to rats. Nature 184:1412–1414

    PubMed  Google Scholar 

  • Levy A, Elsmore TF, Hursh SR (1984) Central vs peripheral anticholinergic effects on repeated acquisition of behavioral chains. Behav Neural Biol 40:1–4

    Article  PubMed  Google Scholar 

  • Rodgers RJ, Blanchard DC, Wong LK, Blanchard RJ (1990) Effects of scopolamine on antipredator defense reactions in wild and laboratory rats. Pharmacol Biochem Behav 36:575–583

    Article  PubMed  Google Scholar 

  • Sarter M, Dudchenko P, Moore H, Bruno JP (1992) Cognition enhancement based on GABA-cholinergic interactions. In: Butcher LL, Levin E (eds) Neurotransmitter interactions and cognitive function. Birkhäuser, Cambridge (in press)

    Google Scholar 

  • Schanker LS (1962) Passage of drugs across body membranes. Pharmacol Rev 14:501–530

    PubMed  Google Scholar 

  • Szerb JC (1964) The effect of tertiary and quaternary atropine on cortical acetylcholine output and on the electroencephalogram in cats. Can J Physiol Pharmacol 42:303–314

    PubMed  Google Scholar 

  • Ungerstedt U (1984) Measurement of neurotransmitter release by intracranial dialysis. In: Marsden CA (ed) Measurement of neurotransmitter release in vivo. John Wiley, New York, pp 81–105

    Google Scholar 

  • Van Hest A, Stroet J, van Haaren F, Feenstra M (1990) Scopolamine differentially disrupts the behavior of male and female Wistar rats in a delayed nonmatching to position procedure. Pharmacol Biochem Behav 35:903–909

    Article  PubMed  Google Scholar 

  • Watanabe H, Shimizu H (1989) Effects of anticholinergic drugs on striatal acetylcholine release and motor activity in freely moving rats studied by microdialysis. Jpn J Pharmacol 51:75–82

    PubMed  Google Scholar 

  • Wenger GR (1979) Effects of physostigmine, atropine and scopolamine on behavior maintained by a multiple schedule of food presentation in the mouse. J Pharmacol Exp Ther 209:137–142

    PubMed  Google Scholar 

  • Witkin JM, Gordon RK, Chiang PK (1987) Comparison of in vitro actions with behavioral effects of antimuscarinic agents. J Pharmacol Exp Ther 242:796–803

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, H., Dudchenko, P., Comer, K.S. et al. Central versus peripheral effects of muscarinic antagonists: the limitations of quaternary ammonium derivatives. Psychopharmacology 108, 241–243 (1992). https://doi.org/10.1007/BF02245315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245315

Keywords

Navigation