Skip to main content
Log in

Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function

  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Several lines of evidence have suggested a link between serotonergic and dopaminergic systems in the brain. The interpretation of much of these early data needs careful reevaluation in light of the recent understanding of the plethora of serotonin receptor subtypes, their distribution in the brain and the new findings with more selective serotonin antagonists. Electrophysiological, biochemical and behavioral evidence obtained using highly selective antagonists of the 5-HT2 or 5-HT3 receptor subtypes, MDL 100,907 or MDL 73,147EF, respectively, supports the thesis that serotonin modulates the dopaminergic system. This modulation is most evident when the dopaminergic system has been activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive model for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  • Braestrup C, Squires RF (1978) Pharmacological characterization of benzodiazepine receptors in the brain. Eur J Pharmacol 48:263–270

    Article  PubMed  Google Scholar 

  • Carr AA, Hay DA, Dudley MW, Kehne JH, Nieduzak TR (1990) Derivatives of MDL 11,939 as highly potent and selective inhibitors of serotonin 5-HT2 receptors. Presented at the Second IUPHAR Serotonin Satellite Meeting, Basel, Switzerland, July 11–13

  • Chang RSL, Tran VT, Snyder SH (1978) Histamine H1 receptors in brain labelled with [3H]mepyranine. Eur J Pharmacol 48:463–464

    Article  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between inhibition constant (Ki) and the concentration of inhibitor which causes 50% inhibition (I50) of an enzyme reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  Google Scholar 

  • Cheung Y, Bennett DB, Nahorski SR (1985) [3H]Rauwolscine and [3H]yohimbine to rat cerebral and human platelet membranes: possible heterogeneity of α2-adrenoceptors. Eur J Pharmacol 84:79–85

    Article  Google Scholar 

  • Creese I, Schneider R, Snyder SH (1977) [3H]-Spiroperidol labels dopamine receptors in the pituitary and brain. Eur J Pharmacol 46:377–381

    Article  PubMed  Google Scholar 

  • DeFeudis FS, Ossola L, Schmitt G, Wolff P, Mandel P (1980) Na+-Independent binding of [3H]GABA and [3H]muscimol to subcellular particles of neuronal primary cultures and whole brains. J Neurochem 34:216–218

    PubMed  Google Scholar 

  • Dray A, Gonye TJ, Oakley NR, Tanner T (1976) Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res 113:45–57

    Article  PubMed  Google Scholar 

  • Giambalvo CT, Snodgrass SR (1978) Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: comparison of injection sites. Brain Res 152:555–566

    Article  PubMed  Google Scholar 

  • Goldstein JM, Litwin LC, Sutton EB, Malick JB (1989) Effects of ICI169,369, a selective serotonin antagonist, in electrophysiological tests predictive of antipsychotic activity. J Pharmacol Ther 249:673–680

    Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand:3H-PAT. Nature 305:140–142

    Article  PubMed  Google Scholar 

  • Greengrass P, Bremner R (1979) Binding characteristics of [3H]prazosin to rat brain α-adrenergic receptors. Eur J Pharmacol 55:322–326

    Article  Google Scholar 

  • Herve DJ, Pickal UM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tagmental area of the rat: same structure and synoptic input to dopaminergic neurons. Brain Res 435:71–83

    Article  PubMed  Google Scholar 

  • Itzhak Y (1989) Multiple affinity binding slotes of the sigma receptor: effect of GTP-binding protein modifying agents. Mol Pharmacol 36:512–517

    PubMed  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Article  PubMed  Google Scholar 

  • Leysen JE, Niemegeurs CJR, van Heuten JM, Laduron PM (1982) [3H]Ketanserin (R41468), a selective3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21:310–314

    Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99:S18-S27

    Article  PubMed  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    PubMed  Google Scholar 

  • Minabe Y, Ashby CR, Wang RY (1991) The effect of acute and chronic LY 277359, a selective 5-HT3 receptor antagonist, on the number of spontaneously active midbrain dopamine neurons. Eur J Pharmacol 209:151–156

    Article  PubMed  Google Scholar 

  • Minabe Y, Ashby CR, Wang RY (1992) Effects produced by acute and chronic treatment with granisetron alone or in combination with haloperidol on mid brain dopamine neurons. Eur Neuropsychopharmacol (in press)

  • Palfreyman MG, Sorensen SM, Carr AA, Cheng HC, Dudley MW (1991) 5-HT3 receptor antagonists and their potential in psychiatric disorders. In: Sandler M, Coppen A, Harnett S (eds) 5-Hydroxytryptamine in psychiatry: a spectrum of ideas. Oxford University Press, Oxford, pp 324–330

    Google Scholar 

  • Palfreyman MG, Sorensen SM, Baron BM, Humphreys TM, Moser P, Dudley MW (1992) Antipsychotic potential of 5-HT3 antagonists. In: Meltzer HY (ed) Novel antipsychotic drugs. Raven Press, New York, pp 211–223

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:546–589

    Google Scholar 

  • Pazos A, Cortes R, Palacios J (1985) Autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    Article  PubMed  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxy-methamphetamine. J Pharmacol Exp Ther 240:1–7

    PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1990b) Antagonism of the neurotoxicity due to a single administration of methylenedioxy/methamphetamine. Eur J Pharmacol 181:59–70

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Taylor VL, Abbate GM, Nieduzak TR (1991a) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxy-methamphetamine by blocking the acute stimulation of dopamine synthesis: reversal byl-dopa. J Pharmacol Exp Ther 256:230–235

    PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1991b)l-Dopa-potentiation of the serotonergic deficits due to a single administration of 3,4 methylene dioxymethamphetamine,p-chloroamphetamine or methamphetamine to rats. Eur J Pharmacol 203:41–49

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Fadayel GM, Black CK, Taylor VL (1992a) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine.

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992b) The 5-HT2 antagonist, MDL 28,133A disrupts the serotonergic-dopaminergic interaction mediating the long-term neurochemical effects of 3,4-methylenedioxymethamphetamine.

  • Snyder SH, Chang KJ, Keehar MJ, Yamamura HI (1975) Biochemical identification of the mammalian muscarinic cholinergic receptor. Fed Proc 34:1915–1921

    PubMed  Google Scholar 

  • Sorensen SM, Humphreys TM, Palfreyman MG (1989) Effect of acute and chronic MDL 73,147EF, a 5HT3 antagonist, on A9 and A10 dopamine neurons. Eur J Pharmacol 163:115–118

    Article  PubMed  Google Scholar 

  • Sorensen SM, Humphreys TM, Taylor VL, Schmidt CJ (1992) 5-HT2 antagonists reverse amphetamine-induced slowing of dopaminergic neurons by interfering with stimulated dopamine synthesis. J Pharmacol Exp Ther 260:872–878

    PubMed  Google Scholar 

  • Waeber C, Schoeffler P, Palacios JM, Hoyer D (1988) Molecular pharmacology of 5-HT1D recognition sites: radioligand binding studies in human, pig and calf brain membranes Naunyn-Schmiedeberg's Arch Pharmacol 337:595–601

    Article  Google Scholar 

  • Young AB, Snyder SH (1973) Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci USA 70:2832–2836

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palfreyman, M.G., Schmidt, C.J., Sorensen, S.M. et al. Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology 112 (Suppl 1), S60–S67 (1993). https://doi.org/10.1007/BF02245008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245008

Key words

Navigation