Skip to main content
Log in

Effects of partial meridional barriers on the Antarctic Circumpolar Current—Buoyancy-driven three-layer model

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The transport and vertical structure of the Antarctic Circumpolar Current (ACC) are examined, especially the component of the current driven by buoyancy, by using a three-layer model. We investigate the effects of the South American peninsula, the island arc to the east, and the Macquarie ridge, which are modeled as partial meridional barriers overlapping meridionally each other. We found that the buoyancy-driven component is given as a function of the transport out of the Weddell Sea (S W ) and the sum of the transports into the North Atlantic (S A ) and the North Pacific (S P ) out of the Southern Ocean. The buoyancy-driven current flows westward, ifS W andS A +S P are positive. The transport depends on the value ofS W more thanS A +S P by one order of magnitude within a realistic range of parameters. The most predominant term in the transport equation is inversely proportional to the difference between the Coriolis parameters at the tips of the partial meridional barriers. Thus, the magnitude of the transport strongly depends on the overlapping length of the meridional barriers. The eastward current of the ACC is driven by the predominant eastward wind stress in the Southern Ocean, although a part of the wind-driven component is canceled by the westward buoyancy-driven component. The vertical structure of the ACC is found to be attributed to the surface wind-driven circulation and the deep and bottom buoyancy-driven circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, D. J., Jr. (1982): A note on Sverdrup balance in the Southern Ocean.J. Mar. Res.,40 (Suppl.), 21–26.

    Google Scholar 

  • Broecker, W. S. and T.-H. Peng (1982):Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, 690 pp.

    Google Scholar 

  • Callahan, J. E. (1971): Velocity structure and flux of the Antarctic Circumpolar Current south of Australia.J. Geophys. Res.,76, 5859–5864.

    Google Scholar 

  • Carmack, E. C. and T. D. Foster (1975): On the flow of water out of the Weddell Sea.Deep-Sea Res.,22, 711–724.

    Google Scholar 

  • Foster, T. D. and E. C. Carmack (1976): Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea.Deep-Sea Res.,23, 301–317.

    Google Scholar 

  • Georgi, D. T. (1981): Circulation of bottom waters in the southwestern South Atlantic.Deep-Sea Res.,28, 959–979.

    Article  Google Scholar 

  • Gill, A. E. (1968): A linear model of the Antarctic Circumpolar Current.J. Fluid Mech.,32, 465–488.

    Google Scholar 

  • Gill, A. E. (1973): Circulation and bottom water production in the Weddell Sea.Deep-Sea Res.,20, 111–140.

    Google Scholar 

  • Gordon, A. L. (1966): Potential temperature, oxygen and circulation of bottom water in the Southern Ocean.Deep-Sea Res.,13, 1125–1138.

    Google Scholar 

  • Hellerman, S. and M. Rosenstein (1983): Normal monthly wind stress over the world ocean with error estimates.J. Phys. Oceanogr.,13, 1093–1104.

    Article  Google Scholar 

  • Hidaka, K. and M. Tsuchiya (1953): On the Antarctic Circumpolar Current.J. Mar. Res.,12, 214–222.

    Google Scholar 

  • Ishida, A. (1994): Effects of partial meridional barriers on the Antarctic Circumpolar Current—Wind-driven barotropic model.Dyn. Atoms. Oceans (in press).

  • Johnson, G. C. and H. L. Bryden (1989): On the size of the Antarctic Circumpolar Current.Deep-Sea Res.,36, 39–53.

    Article  Google Scholar 

  • Johnson, J. A. and R. B. Hill (1975): A three-dimensional model of the Southern Ocean with bottom topography.Deep-Sea Res.,22, 745–751.

    Google Scholar 

  • Kawase, M. (1987): Establishment of deep ocean circulation driven by deep-water production.J. Phys. Oceanogr.,17, 2294–2317.

    Article  Google Scholar 

  • Killworth, P. D. (1973): A two-dimensional model for the formation of Antarctic Bottom Water.Deep-Sea Res.,20, 941–971.

    Google Scholar 

  • Klinck, J. M. (1986): Channel dynamics and its application to the Antarctic Circumpolar Current. p. 299–328. InAdvanced Physical Oceanographic Numerical Modelling, ed. by J. J. O'Brien, NATO ASI Series C, D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Kuo, H. H. (1978): Topographic effect on the deep circulation and the abyssal oxygen distribution.J. Phys. Oceanogr.,8, 428–436.

    Article  Google Scholar 

  • Kuo, H. H. and G. Veronis (1973): The use of oxygen as a test for an abyssal circulation model.Deep-Sea Res.,20, 871–888.

    Google Scholar 

  • McWilliams, J. C., W. R. Holland and J. H. S. Chow (1978): A description of numerical Antarctic Circumpolar Currents.Dyn. Atmos. Oceans.,2, 213–291.

    Article  Google Scholar 

  • Munk, W. H. and E. Palmén (1951): Note on the dynamics of the Antarctic Circumpolar Current.Tellus,3, 53–55.

    Google Scholar 

  • Nowlin, W. D., Jr., T. Whitworth, III and R. D. Pillsbury (1977): Structure and transport of the Antarctic Circumpolar Current at Drake Passage from short-term measurements.J. Phys. Oceanogr.,7, 788–802.

    Article  Google Scholar 

  • Patterson, S. L. (1985): Surface circulation and kinetic energy distributions in the southern hemisphere oceans from FGGE drifting buoys.J. Phys. Oceanogr.,15, 865–884.

    Article  Google Scholar 

  • Reid, J. L. (1986): On the total geostrophic circulation of the South Pacific Ocean: Flow patterns, tracers and transports.Prog. Oceanogr.,16, 1–61.

    Article  Google Scholar 

  • Reid, J. L. (1989): On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers and transports.Prog. Oceanogr.,23, 149–244.

    Article  Google Scholar 

  • Rintoul, R. R. (1991): South Atlantic interbasin exchange.J. Geophys. Res.,96, 2675–2692.

    Google Scholar 

  • Solomon, H. (1974): Comments on the Antarctic Bottom Water problem and high-latitude thermohaline sinking.J. Geophys. Res.,79, 881–884.

    Google Scholar 

  • Stommel, H. (1957): A survey of ocean current theory.Deep-Sea Res.,4, 149–184.

    Article  Google Scholar 

  • Stommel, H. (1958): The abyssal circulation.Deep-Sea Res.,5, 80–82.

    Article  Google Scholar 

  • Stommel, H. and A. B. Arons (1960a): On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere.Deep-Sea Res.,6, 140–154.

    Article  Google Scholar 

  • Stommel, H. and A. B. Arons (1960b): On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins.Deep-Sea Res.,6, 217–233.

    Article  Google Scholar 

  • Treguier, A. M. and J. C. McWilliams (1990): Topographic influences on wind-driven, stratified flow in a β-plane channel: An idealized model for the Antarctic Circumpolar Current.J. Phys. Oceanogr.,20, 321–343.

    Article  Google Scholar 

  • Tziperman, E. (1986): On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans.J. Phys. Oceanogr.,16, 680–693.

    Article  Google Scholar 

  • Weiss, R. F., H. G. Ostlund and H. Craig (1979): Geochemical studies of the Weddell Sea.Deep-Sea Res.,26, 1093–1120.

    Article  Google Scholar 

  • Whitworth, T., III (1983): Monitoring the transport of the Antarctic Circumpolar Current at Drake Passage.J. Phys. Oceanogr.,13, 2045–2057.

    Article  Google Scholar 

  • Whitworth, T. III, W. D. Nowlin, Jr. and S. J. Worley (1982): The net transport of the Antarctic Circumpolar Current through Drake Passage.J. Phys. Oceanogr.,12, 960–971.

    Article  Google Scholar 

  • Whitworth, T., III, W. D. Nowlin, Jr., R. D. Pillsbury, M. I. Moore and R. F. Weiss (1991): Observation of the Antarctic Circumpolar Current and deep boundary current in the Southwest Atlantic.J. Geophys. Res.,96, 15105–15118.

    Google Scholar 

  • Wolff, J.-O. and D. J. Olbers (1989): The dynamical balance of the Antarctic Circumpolar Current studied with an eddy resolving quasi-geostrophic model. p. 435–458. InMesoscale-Synoptic Coherent Structures in Geophysical Turbulence, ed. by J. C. J. Nihoul and B. M. Jamart, Elsevier, Amsterdam.

    Google Scholar 

  • Wolff, J.-O., E. Maier-Reimer and D. J. Olbers (1991): Wind-driven flow over topography in a zonal β-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current.J. Phys. Oceanogr.,21, 236–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, A. Effects of partial meridional barriers on the Antarctic Circumpolar Current—Buoyancy-driven three-layer model. J Oceanogr 50, 295–316 (1994). https://doi.org/10.1007/BF02239519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02239519

Keywords

Navigation