Skip to main content
Log in

Numerical integration of the radon transform on classesE α s in multiple (finite) dimensions

Numerische Integration der Radontransformation aufE α s Klassen in beliebiger (endlicher) Dimension

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The reconstruction of functions from their projections calls for the (numerical) inversion of the Radon transform. Some of these methods, especially the filtered backprojection algorithms are of great importance in image reconstruction and also in computerized tomography. In this paper we consider a method for the reconstruction of sufficient smooth functions based on filtered backprojection by application of numbertheoretical numerical integration. For arbitrary finite dimensions we give a class of filter functions for the reconstruction and we establish error estimates and convergence rates for the numerical integration process. Further we present for the casess=2, 3 possible integration formulas for the filtered backprojection. Finally, we give some numerical reconstructions of the head phantom that confirm the theoretical results.

Zusammenfassung

Die Rekonstruktion von Funktionen aus ihren Projektionen erfordert die (numerische) Inversion der Radontransformation. Einige von diesen Methoden, insbesondere die gefilterten Rückprojektionsalgorithmen sind von großer Bedeutung in der Bildrekonstruktion und in der Computertomographie. In dieser Arbeit betrachten wir eine Methode zur Rekonstruktion von hinreichend glatten Funktionen mittels der gefilterten Rückprojektion durch Anwendung zahlentheoretischer numerischer Integration. Für beliebige endliche Dimensionen geben wir eine Klasse von Filterfunktionen für die Rekonstruktion an und leiten Fehlerabschätzungen und Konvergenzraten für den numerischen Integrationsprozess her. Wir präsentieren für die Fälles=2, 3 mögliche Integrationsformeln für die gefilterte Rückprojektion. Zuletzt führen wir einige numerische Rekonstruktionen des Head Phantoms an, die die theoretischen Ergebnisse bestätigen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hlawka, E.: Trigonometrische Interpolation bei Funktionen von mehreren Variablen. Acta Arith.9, 305–320 (1964).

    Google Scholar 

  2. Hlawka, E.: Zur Radontransformation. Sitzgsber. Österr. Akad. Wiss., Abt. II,198, 331–379 (1989).

    Google Scholar 

  3. Hua Loo, K., Wang, Y.: Applications of number theory to numerical analysis. Berlin Heidelberg New York: Springer 1981.

    Google Scholar 

  4. Korobov, N. M.: Numbertheoretical methods in approximate analysis (Russian). Moscow: Fitzmatgiz 1963.

    Google Scholar 

  5. Korobov, N. M.: On the computation of optimal coefficients. Soviet Math. Dokl.26, No. 3 (1982).

  6. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. New York: John Wiley 1974.

    Google Scholar 

  7. Natterer, F.: The mathematics of computerized tomography. Stuttgart: B. G. Teubner 1986.

    Google Scholar 

  8. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-NSF63, Regional Conference Series in applied mathematics, Philadelphia, Pennsylvania: SIAM 1992.

    Google Scholar 

  9. Niederreiter, H., Sloan, I.H.: Lattice rules for multiple integration and discrepancy. Math. Comput.54, 303–312 (1990).

    Google Scholar 

  10. Revers, M., Zinterhof, P.: Application of numbertheoretic methods to the numerics of computerized tomography. Schriftenreihe d. Österr. Computer Gesellschaft (OCG) (64), Wien-München: Oldenbourg 1992.

    Google Scholar 

  11. Sloan, I. H.: Lattice methods for multiple integration. J. Comput. Appl. Math.12/13, 131–143, (1985).

    Google Scholar 

  12. Sloan, I. H.: Lattice methods for multiple integration: theory, error analysis and examples. SIAM J. Number. Anal.24, 116–128 (1987).

    Google Scholar 

  13. Stein, E., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton: Princeton University Press 1971.

    Google Scholar 

  14. Zaremba, S.: Some applications of multidimensional integration by parts. Ann. Polon. Math.21, 85–96 (1968).

    Google Scholar 

  15. Zinterhof, P.: Gratis lattice points for multidimensional integration. Computing38, 347–353 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revers, M. Numerical integration of the radon transform on classesE α s in multiple (finite) dimensions. Computing 54, 147–165 (1995). https://doi.org/10.1007/BF02238129

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238129

AMS Subject Classifications

Key words

Navigation