Skip to main content
Log in

Abstract

Bone chemistry paleodietary studies are emerging as important research areas in archaeology, biological anthropology, and paleontology. With appropriate controls, the inorganic and organic chemical composition of bones and teeth can provide information about past diet and habitat use. Chemical signatures are used to address individual dietary variability in early hominid fossils, paleontological remains, and more recent human and faunal populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Alfrey, A. C., and Miller, N. L. (1973). Bone magnesium pools in uremia.Journal of Clinical Investigations 52: 3019–3027.

    Google Scholar 

  • Alfrey, A. C., Miller, N. L., and Butkus, D. (1974). Evaluation of body magnesium stores.Journal of Laboratory and Clinical Medicine 84: 153–162.

    Google Scholar 

  • Ambrose, S. H. (1987). Chemical and isotopic techniques of diet reconstruction in eastern North America. In Keegan, W. F. (ed.),Emergent Horticultural Economies of the Eastern Woodlands, Southern Illinois University, Carbondale, pp. 87–107.

    Google Scholar 

  • Ambrose, S. H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis.Journal of Archaeological Science 17: 431–451.

    Google Scholar 

  • Ambrose, S. H. (1991). Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs.Journal of Archaeological Science 18: 293–318.

    Google Scholar 

  • Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive considerations. In Sandford, M. K. (ed.),Investigations of Ancient Human Tissues: Chemical Analysis in Anthropology, Gordon and Breach, New York, pp. 59–130.

    Google Scholar 

  • Ambrose, S. H., and DeNiro, M. J. (1986a). The isotope ecology of East African mammals.Oecologia 69: 395–406.

    Google Scholar 

  • Ambrose, S. H., and DeNiro, M. J. (1986b). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios.Nature 319: 321–324.

    Google Scholar 

  • Ambrose, S. H., and DeNiro, M. J. (1987). Bone nitrogen isotope composition and climate.Nature 325: 201.

    Google Scholar 

  • Ambrose, S. H., and Norr, L. (1993). Isotopic composition of dietary protein and energy versus bone collagen and apatite: Purified diet growth experiments. In Lambert, J. B., and Grupe, G. (eds.),Molecular Archaeology of Prehistoric Human Bone, Springer Verlag, Berlin, pp. 1–37.

    Google Scholar 

  • Anspaugh, L. R., Robinson, W. L., Martin, W. H., and Lowe, O. A. (1972).Compilation of Published Information on Elemental Concentrations in Human Organs in Both Normal and Diseased States, Part 3, Lawrence Livermore Laboratory, Livermore, CA.

    Google Scholar 

  • Antoine, S. E., Child, A. M., and Pollard, A. M. (1992). The biochemistry and microbiology of buried human bone, in relation to dietary reconstruction.Circaea 9: 65–79.

    Google Scholar 

  • Ayliffe, L., and Chivas, A. (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos—Potential as a paleoenvironmental recorder.Geochimica et Cosmochimica Acta 54: 2603–2609.

    Google Scholar 

  • Bada, J. L. (1985). Amino acid racemization dating of fossil bones.Annual Review Earth and Planetary Sciences 13: 241–268.

    Google Scholar 

  • Bada, J. L., Schoeninger, M. J., and Schimmelmann, A. (1989). Isotopic fractionation during peptide bond hydrolysis.Geochimica et Cosmochimica Acta 53: 3337–3341.

    Google Scholar 

  • Bada, J. L., Peterson, R. O., Schimmelmann, A., and Hedges, R. E. M. (1990). Moose teeth as monitors of environmental isotopic parameters.Oecologia 82: 102–106.

    Google Scholar 

  • Bartsiokas, A., and Middleton, A. P. (1992). Characterization and dating of recent and fossil bone by X-ray diffraction.Journal of Archaeological Science 19: 63–72.

    Google Scholar 

  • Beck, L. (1985). Bivariate analysis of trace elements in bone.Journal of Human Evolution 14: 493–502.

    Google Scholar 

  • Bender, M., Baerreis, D. A., and Steventon, R. L. (1981). Further light on carbon isotopes and Hopewell agriculture.American Antiquity 46: 346–353.

    Google Scholar 

  • Blakely, R. I., and Beck, L. A. (1981). Trace elements nutritional status, and social stratification at Etowah, Georgia.Annals of the New York Academy of Science 376: 417–431.

    Google Scholar 

  • Boaz, N. T., and Hampel, J. (1978). Strontium content of fossil tooth enamel and diet of early hominids.Journal of Paleontology 52: 928–933.

    Google Scholar 

  • Bocherens, H., Fizet, M., Mariotti, A., Lange-Badre, B., Vandermeersch, B., Borel, J. P., and Bellon, G. (1991). Isotopic biogeochemistry (13C,15N) of fossil vertebrate collagen: Application to the study of a past food web including Neanderthal man.Journal of Human Evolution 20: 481–492.

    Google Scholar 

  • Boskey, A. L., and Posner, A. S. (1984). Structure and formation of bone mineral. In Hastings, G. W., and Ducheyne, P. (eds.),Natural and Living Biomaterials, CRC Press, Boca Raton, FL, pp. 27–41.

    Google Scholar 

  • Boutton, T. W., Klein, P. D., Lynott, M. J., Price, J. E., and Tieszen, L. L. (1984). Stable carbon isotope ratios as indicators of prehistoric human diet. In Turnlund, J. R., and Johnson, P. E. (eds.),Stable Isotopes in Nutrition, American Chemical Society, Washington, D.C., pp. 191–204.

    Google Scholar 

  • Brock, T. D., and Madigan, M. T. (1991).Biology of Microorganisms, 6th ed., Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Broida, M. (1984). An estimate of the percents of maize in the diets of two Kentucky fort ancient villages. In Pollack, D., Hockensmith, C. D., and Sanders, T. N. (eds.),Late Prehistoric Research in Kentucky, Kentucky Heritage Council, Frankfort, pp. 68–82.

    Google Scholar 

  • Brothwell, D. R., and Sandison, A. T. (1967).Diseases in Antiquity: A Survey of the Diseases, Injuries and Surgery of Early Populations, Charles C Thomas, Springfield, IL.

    Google Scholar 

  • Brown, A. B. (1973).Bone Strontium Content as a Dietary Indicator in Human Skeletal Populations, Ph.D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.

    Google Scholar 

  • Brown, A. B. (1974). Bone strontium as a dietary indicator in human skeletal populations.Contributions to Geology 13: 47–48.

    Google Scholar 

  • Brown, A. B., and Blakely, R. L. (1985). Biocultural adaptation as reflected in trace element distribution.Journal of Human Evolution 14: 461–468.

    Google Scholar 

  • Buikstra, J. E., and Cook, D. C. (1980). Paleopathology: An American account.Annual Review of Anthropology 9: 433–470.

    Google Scholar 

  • Buikstra, J. E., and Milner, G. R. (1991). Isotopic and archaeological interpretations of diet in the central Mississippi Valley.Journal of Archaeological Science 18: 319–329.

    Google Scholar 

  • Buikstra, J. E., Bullington, J., Charles, D. K., Frankenberg, S., Konigsberg, L., Lambert, J. B., and Xue, L. (1987). Diet, demography, and the development of horticulture. In Keegan, W. F. (ed.),Emergent Horticultural Economies of the Eastern Woodlands, Southern Illinois University, Carbondale, pp. 67–85.

    Google Scholar 

  • Buikstra, J. E., Autry, W., Breitburg, E., Eisenberg, L., and van der Merwe, N. (1988). Diet and health in the Nashville basin: Human adaptation and maize agriculture in middle Tennessee. In Kennedy, B. V., and LeMoine, G. M. (eds.),Diet and Subsistence: Current Archaeological Perspectives, University of Calgary Press, Calgary, pp. 243–259.

    Google Scholar 

  • Buikstra, J. E., Frankenberg, S., Lambert, J. B., and Xue, L. (1989). Multiple elements: Multiple expectations. In Price, T. D. (ed.),The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 155–210.

    Google Scholar 

  • Burger, R. L., and van der Merwe, N. J. (1990). Maize and the origin of highland Chavin civilization: An isotopic perspective.American Anthropologist 92: 85–95.

    Google Scholar 

  • Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B. (1982). Variation of seawater87Sr/86Sr throughout Phanerozoic time.Geology 10: 516–519.

    Google Scholar 

  • Burnell, J. M., Liu, C., Miller, A. G., and Teubner, E. (1986). Effects of dietary alteration of bicarbonate and magnesium on rat bone.American Journal of Physiology 250: F302-F307.

    Google Scholar 

  • Burton, J. H., and Price, T. D. (1990). The ratio of barium to strontium as a paleodietary indicator of consumption of marine resources.Journal of Archaeological Science 17: 547–557.

    Google Scholar 

  • Burton, J. H., and Price, T. D. (1991). Paleodietary applications of barium values in bone. In Pernicka, E., and Wagner, E. A. (eds.),Proceedings of the 27th International Symposium on Archaeometry, Heidelberg, 1990, Birkhauser Verlag, Basel, pp. 787–795.

    Google Scholar 

  • Child, A. M., and Pollard, A. M. (1991). Microbial attack on collagen. In Pernicka, E., and Wagner, G. A. (eds.),Proceedings of the 27th International Symposium on Archaeometry, Heidelberg, 1990, Birkhauser Verlag, Basel, pp. 617–625.

    Google Scholar 

  • Chisholm, B. S., Nelson, D. E., Schwarcz, H. P. (1982). Stable-carbon isotope ratios as a measure of marineversus terrestrial protein in ancient diets.Science 216: 1131–1132.

    Google Scholar 

  • Chisholm, B. S., Nelson, D. E., and Schwarcz, H. P. (1983). Marine and terrestrial protein in prehistoric diets on the British Columbia coast.Current Anthropology 24: 396–398.

    Google Scholar 

  • Chmura, G. L., Aharon, P., Socki, R. A., and Abernethy, R. (1987). An inventory of13C abundances in coastal wetlands of Louisiana, U.S.A.: Vegetation and sediments.Oecologia 74: 264–271.

    Google Scholar 

  • Clutton-Brock, J., and Noe-Nygaard, N. (1990). New osteological and C-isotope evidence on Mesolithic dogs: Companions to hunters and fishers at Star Carr, Seamer Carr and Kongemose,Journal of Archaeological Science 17: 643–653.

    Google Scholar 

  • Cohen, L., and Kitzes, R. (1982). Relationship of bone and plasma magnesium in magnesium-deficient cirrhosis patients.Israel Journal of Medical Sciences 18: 679–682.

    Google Scholar 

  • Cohen, M. N., and Armelagos, G. J. (eds.) (1984).Paleopathology at the Origins of Agriculture, Academic Press, New York.

    Google Scholar 

  • Collier, S., and Hobson, K. A. (1987). The importance of marine protein in the diet of coastal Australian Aborigines.Current Anthropology 28: 559–564.

    Google Scholar 

  • Comar, C. L., Russell, L., and R. Wasserman (1957). Strontium-calcium movement from soil to man.Science 126: 485–496.

    Google Scholar 

  • Connor, M., and Slaughter, D. (1984). Diachronic study of Inuit diets utilizing trace element analysis.Arctic Anthropology 21: 123–134.

    Google Scholar 

  • Deetz, J. (1968). The inference of residence and descent rules from archaeological data. In Binford, S. R., and Binford, L. R. (eds.),New Perspectives in Archaeology, Aldine, Chicago, pp. 41–48.

    Google Scholar 

  • Deines, P. (1980). The isotopic composition of reduced organic carbon. In Fritz, P., and Fontes, J. Ch. (eds.),Handbook of Environmental Isotope Geochemistry, Vol. 1, Elsevier, Amsterdam, pp. 329–406.

    Google Scholar 

  • Delwiche, C. C., Zinke, P. J., Johnson, C. M., and Virginia, R. A. (1979). Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation.Botanical Gazette (Suppl.)140: 65–69.

    Google Scholar 

  • DeNiro, M. J. (1985). Postmortem preservation and alteration ofin vivo bone collagen isotope ratios in relation to paleodietary reconstruction.Nature 317: 806–809.

    Google Scholar 

  • DeNiro, M. J. (1987). Stable isotopy and archaeology.American Scientist 75: 182–191.

    Google Scholar 

  • DeNiro, M. J., and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals.Geochimica et Cosmochimica Acta 42: 495–506.

    Google Scholar 

  • DeNiro, M. J., and Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals.Geochimica et Cosmochimica Acta 45: 341–351.

    Google Scholar 

  • DeNiro, M. J., and Hastorf, C. A. (1985). Alteration of15N/14N and13C/12C ratios of plant matter during the initial stages of diagenesis: Studies utilizing archaeological specimens from Peru.Geochimica et Cosmochimica Acta 49: 97–115.

    Google Scholar 

  • DeNiro, M. J., and Schoeninger, M. J. (1983). Stable carbon and nitrogen isotope ratios of bone collagen: Variations within individuals, between sexes, and within populations raised on monotonous diets.Journal of Archaeological Science 10: 199–203.

    Google Scholar 

  • DeNiro, M. J., and Weiner, S. (1988a). Use of collagenase to purify collagen from prehistoric bones for stable isotopic analysis.Geochimica et Cosmochimica Acta 52: 2425–2431.

    Google Scholar 

  • DeNiro, M. J., and Weiner, S. (1988b). Chemical, enzymatic and spectroscopic characterization of “collagen” and other organic fractions from prehistoric bones.Geochimica et Cosmochimica Acta 52: 2197–2206.

    Google Scholar 

  • DeNiro, M. J., and Weiner, S. (1988c). Organic matter within crystalline aggregates of hydroxyapatite: A new substrate for stable isotopic and possibly other biogeochemical analyses of bone.Geochimica et Cosmochimica Acta 52: 2415–2423.

    Google Scholar 

  • DePaolo, D. J., and Ingram, B. L. (1985). High resolution stratigraphy with strontium isotopes.Science 227: 938–941.

    Google Scholar 

  • Deuser, W. G. (1970). Isotopic evidence for diminishing supply of available carbon during diatom bloom in the Black Sea.Nature 225: 1069–1071.

    Google Scholar 

  • Downton, W. J. S. (1975). The occurrence of C4 photosynthesis among plants.Photosynthetica 9: 96–105.

    Google Scholar 

  • Ehleringer, J. R. (1989). Carbon isotope ratios and physiological processes in arid-land plants. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.),Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 41–54.

    Google Scholar 

  • Ehleringer, J. R., and Cooper, T. A. (1988). Correlations between carbon isotope ratio and microhabitat in desert plants.Oecologia 76: 562–566.

    Google Scholar 

  • Ehleringer, J. R., Field, C. B., Lin, Z. F., and Kuo, C. Y. (1986). Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline.Oecologia 70: 520–526.

    Google Scholar 

  • Elias, R., Hirao, Y., and Patterson, C. (1982). The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead.Geochimica et Cosmochimica Acta 46: 2561–2580.

    Google Scholar 

  • Ember, L. M., Williams, D. F., and Morris, J. T. (1987). Processes that influence carbon isotope variations in salt marsh sediments.Marine Ecology Progress Series 36: 33–42.

    Google Scholar 

  • Ericson, J. E. (1985). Strontium isotope characterization in the study of Prehistoric human ecology.Journal of Human Evolution 14: 503–514.

    Google Scholar 

  • Ericson, J. E. (1989). Some problems and potentials of strontium isotope analysis for human and animal ecology. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.),Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 252–259.

    Google Scholar 

  • Ericson, J. E., West, M., Sullivan, C. H., and Krueger, H. W. (1989). The development of maize agriculture in the Viru Valley, Peru. In Price, T. D. (ed.),The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 68–104.

    Google Scholar 

  • Ezzo, J. A. (1992). A test of dietversus diagenesis at Ventana Cave, Arizona.Journal of Archaeological Science 19: 23–37.

    Google Scholar 

  • Farquhar, G. D., Ball, M. C., von Caemmerer, S., and Roksandic, Z. (1982a). Effect of salinity and humidity on δ13C value of halophytes—Evidence for diffusional isotope fractionation determined by the ratio of intercellular/atmospheric partial pressure of CO2 under different environmental conditions.Oecologia 52: 121–124.

    Google Scholar 

  • Farquhar, G. D., O'Leary, M. H., and Berry, J. A. (1982b). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves.Australian Journal of Plant Physiology 9: 121–137.

    Google Scholar 

  • Farquhar, G. D., Masle, J., Hubick, K., von Caemmerer, S., and Terashima, I. (1987). Effects of drought, salinity, and soil strength on photosynthesis, transpiration, and carbon isotope composition of plants.Current Topics in Plant Biochemistry and Physiology 6: 147–155.

    Google Scholar 

  • Farnsworth, P., Brady, J. E., DeNiro, M. J., and MacNeish, R. S. (1985). A re-evaluation of the isotopic and archaeological reconstruction of diet in the Tehuacan Valley.American Antiquity 50: 102–116.

    Google Scholar 

  • Farrow, D. C. (1986). A study of Monongahela subsistence patterns based on mass spectrometric analysis.Mid-Continental Journal of Archaeology 11: 153–179.

    Google Scholar 

  • Forbes, R. M. (1966). Effects of magnesium, potassium and sodium nutriture on mineral composition of selected tissues of the albino rat.Journal of Nutrition 88: 403–410.

    Google Scholar 

  • Fontugne, M. R., and Duplessy, J. C. (1981). Organic carbon isotopic fractionation by marine plankton in the temperature range −1 to 31 C.Oceanologica Acta 4: 85–89.

    Google Scholar 

  • Francalacci, P. (1988). Comparison of archaeological trace element and stable isotope data from two Italian coastal sites.Rivista di Antropologia (Roma) 66: 239–250.

    Google Scholar 

  • Francalacci, P. (1989). Dietary reconstruction at Arene Candide Cave (Liguria, Italy) by means of trace element analysis.Journal of Archaeological Science 16: 109–124.

    Google Scholar 

  • Francalacci, P., and Borgognini Tarli, S. (1988). Multielementary analysis of trace elements and preliminary results on stable isotopes in two Italian prehistoric sites. Methodological aspects. In Grupe, G., and Herrmann, B. (eds.),Trace Elements in Environmental History, Springer-Verlag, Berlin, pp. 41–52.

    Google Scholar 

  • Fraser, P. J., Pearman, G. L., and Hydson, P. (1983). The global distribution of atmospheric carbon dioxide. 2. A review of provisional background observations, 1978–1980.Journal of Geophysical Research 88: 3591–3598.

    Google Scholar 

  • Frost, H. M. (1980). Skeletal physiology and bone remodeling. In Urist, M. R. (ed.),Fundamental and Clinical Bone Physiology, J. B. Lippincott, Philadelphia, pp. 208–241.

    Google Scholar 

  • Fry, B. (1988). Food web structure on Georges Bank from stable C, N and S isotopic compositions.Limnology and Oceanography 33: 1182–1190.

    Google Scholar 

  • Fry, B., and Parker, P. L. (1979). Animal diet in Texas seagrass meadows: δ13C evidence for the importance of benthic plants.Estuarine and Coastal Marine Science 8: 499–509.

    Google Scholar 

  • Fry, B., and Sherr, E. B. (1989). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.),Stable Isotopes in Ecological Research, Springer-Verlag, New York, pp. 196–229.

    Google Scholar 

  • Fry, B., Scalan, R. S., and Parker, P. L. (1983).13C/12C Ratios in marine food webs of the Torres Strait, Queensland.Australian Journal of Marine and Freshwater Research 34: 707–715.

    Google Scholar 

  • Garland, A. N. (1989). Microscopical analysis of fossil bone.Applied Geochemistry 4: 215–229.

    Google Scholar 

  • Garland, A. N., Janaway, R. C., and Roberts, C. A. (1988). A study of the decay processes of human remains from the Parish Church of the Holy Trinity, Rothwell, Northamptonshire.Oxford Journal of Archaeology 7: 235–252.

    Google Scholar 

  • Gat, J. R. (1980). The isotopes of oxygen and hydrogen in precipitation. In Fritz, P., and Fontes, J. Ch. (eds.),Handbook of Environmental Isotope Geochemistry, Vol. 1, Elsevier, Amsterdam, pp. 21–47.

    Google Scholar 

  • Gearing, J. N., Gearing, P. L., Rudnick, D. T., Requejo, A. G., and Hutchins, M. J. (1984). Isotope variability of organic carbon in a phytoplankton-based, temperate estuary.Geochimica et Cosmochimica Acta 48: 1089–1098.

    Google Scholar 

  • Geidel, A. A. (1981a).Paleonutrition and Social Stratification: A Study of Trace Elements in Human Skeletons from the Dallas Archaeological Culture of Eastern Tennessee, M.A. thesis, Department of Anthropology, Pennsylvania State University, Philadelphia.

    Google Scholar 

  • Geidel, A. A. (1981b). Trace element studies for Mississippian skeletal remains: Findings from neutron activation analysis.MASCA Journal 2: 13–16.

    Google Scholar 

  • Gilbert, R. I. (1975).Trace Element Analyses of Three Skeletal Amerindian Populations at Dickson Mounds, Ph.D. dissertation, Department of Anthropology, University of Massachusetts, Amherst.

    Google Scholar 

  • Gilbert, R. I. (1977). Application of trace element research to problems in archaeology. In Blakely, R. L. (ed.),Biocultural Adaptation in Prehistoric America, University of Georgia Press, Athens, pp. 85–100.

    Google Scholar 

  • Giugliano, R., and Millward, D. J. (1984). Growth and homeostasis in the severely Zn-deficient rat.British Journal of Nutrition 52: 545–560.

    Google Scholar 

  • Glimcher, M. J. (1976). Composition, structure, and organization of bone and other mineralized tissues and the mechanism of calcification. InHandbook of Physiology, Endocrinology, Williams and Wilkins, Baltimore, Chap. 7.

    Google Scholar 

  • Gordon, C. C., and Buikstra, J. E. (1981). Soil pH, bone preservation, and sampling bias at mortuary sites.American Antiquity 46: 566–571.

    Google Scholar 

  • Gormley, J. R., and Sackett, W. M. (1977). Carbon isotope evidence for the maturation of marine lipids. In Campos, R., and Goni, J. (eds.),Advances in Organic Geochemistry, 1975, Pergamon Press, Oxford, pp. 321–339.

    Google Scholar 

  • Griffith, F. D., Parker, H. E., and Rogler, J. C. (1964). Effects of dietary magnesium and fluoride on the magnesium content of tissues from growing chicks.Journal of Nutrition 83: 15–19.

    Google Scholar 

  • Grupe, G., and Piepenbrink, H. (1988). Trace element contamination in excavated bones by microorganisms. In Grupe, G., and Herrmann, B. (eds.),Trace Elements in Environmental History, Springer-Verlag, Berlin, pp. 103–112.

    Google Scholar 

  • Grupe, G., and Piepenbrink, H. (1989). Impact of microbial activity on trace element concentrations in excavated bones.Applied Geochemistry 4: 293–298.

    Google Scholar 

  • Grupe, G., Pieppenbrink, H., and Schoeninger, M. J. (1989). Note on microbial influence on stable carbon and nitrogen isotopes in bone.Applied Geochemistry 4: 299.

    Google Scholar 

  • Haas, H., and Banewicz, J. (1980). Radiocarbon dating on bone apatite using thermal release of CO2.Radiocarbon 22: 537–544.

    Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones.Medicine, Science and Law 21: 243–265.

    Google Scholar 

  • Haines, E. B., and Montague, C. L. (1979). Food sources of estuarine invertebrates analyzed using13C/12C ratios.Ecology 60: 48–56.

    Google Scholar 

  • Hancock, R. G. V., Grynpas, M. D., and Pritzker, K. P. H. (1989). The abuse of bone analyses for archaeological dietary studies.Archaeometry 31: 169–179.

    Google Scholar 

  • Hanson, D. B., and Buikstra, J. E. (1987). Histomorphological alteration in buried human bone from the Lower Illinois Valley: Implications for paleodietary research.Journal of Archaeological Science 14: 549–563.

    Google Scholar 

  • Hare, P. E. (1980). Organic geochemistry of bone and its relation to the survival of bone in the natural environment. In Behrensmeyer, A. K., and Hill, A. P. (eds.),Fossils in the Making, University of Chicago Press, Chicago, pp. 197–207.

    Google Scholar 

  • Hare, P. E., and Estep, M. L. F. (1983). Carbon and nitrogen isotopic composition of amino acids in modern and fossil collagens.Carnegie Institute of Washington Yearbook 82: 410–414.

    Google Scholar 

  • Hare, P. E., Fogel, M. L., Stafford, T. W. J., Mitchell, A. D., and Hoering, T. C. (1991). The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins.Journal of Archaeological Science 18: 277–292.

    Google Scholar 

  • Harritt, R. K., and Radosevich, S. C. (1992). Results of instrument neutron-activation trace-element analysis of human remains from the Naknek region, southwest Alaska.American Antiquity 57: 288–299.

    Google Scholar 

  • Hassan, A. A. (1976).Geochemical and Mineralogical Studies on Bone Material and Their Implications for Radiocarbon Dating, Ph.D. dissertation, Department of Geology, Southern Methodist University, Dallas, TX.

    Google Scholar 

  • Hassan, A. A., Termine, J. D., and Haynes, C. V. (1977). Mineralogical studies on bone apatite and their implications for radiocarbon dating.Radiocarbon 19: 364–374.

    Google Scholar 

  • Hatch, J. W., and Geidel, R. A. (1985). Status-specific dietary variation in two world cultures,Journal of Human Evolution,14: 469–476.

    Google Scholar 

  • Heaton, T. H. E. (1987). The15N/14N ratios of plants in South Africa and Namibia: Relationship to climate and coastal/saline environments.Oecologia 74: 236–246.

    Google Scholar 

  • Heaton, T. H. E., Vogel, J. C., von la Chevallerie, G., and Collett, G. (1986). Climatic influence on the isotopic composition of bone nitrogen.Nature 322: 822–823.

    Google Scholar 

  • Ho, T. Y., Marcus, L. F., and Berger, R. (1968). Radiocarbon dating of petroleum impregnated bone from tar pits at Rancho La Brea, California.Science 164: 1051–1052.

    Google Scholar 

  • Hobson, K. A., and Collier, J. (1984). Marine and terrestrial protein in Australian aboriginal diets.Current Anthropology 25: 238–240.

    Google Scholar 

  • Hoefs, J. (1987).Stable Isotope Geochemistry, Springer-Verlag, New York.

    Google Scholar 

  • Huber, A. M., and Gershoff, S. N. (1970). Effects of dietary zinc and calcium on the retention and distribution of zinc in rats fed semipurified diets.Journal of Nutrition 100: 949–954.

    Google Scholar 

  • Hubick, K. T., Farquhar, G. D., and Shorter, R. (1986). Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut (Arachis) germplasm.Australian Journal of Plant Physiology 13: 803–816.

    Google Scholar 

  • Jackson, M. J., Jones, D. A., and Edwards, R. H. T. (1982). Tissue zinc levels as an index of body zinc status.Clinical Physiology 2: 333–343.

    Google Scholar 

  • Katzenberg, M. A. (1984). Chemical analysis of prehistoric human bone from five temporally distinct populations in southern Ontario.National Museum of Man, Mercury Series. Archaeological Survey of Canada Paper 129.

  • Katzenberg, M. A. (1989). Stable isotope analysis of archaeological faunal remains from southern Ontario.Journal of Archaeological Science 16: 319–329.

    Google Scholar 

  • Katzenberg, M. A., and Schwarcz, H. P. (1984). Dietary change in southern Ontario prehistory: Evidence from strontium and stable isotopes of carbon and nitrogen.American Journal of Physical Anthropology 63: 177.

    Google Scholar 

  • Katzenberg, M. A., and Schwarcz, H. P. (1986). Paleonutrition in southern Ontario: Evidence from strontium and stable isotopes.Canadian Review of Physical Anthropology 5: 15–21.

    Google Scholar 

  • Keegan, W. F. (1985).Dynamic Horticulturalists: Population Expansion in the Prehistoric Bahamas, Ph.D. dissertation, Department of Anthropology, University of California, Los Angeles.

    Google Scholar 

  • Keegan, W. F. (1987). Diffusion of maize from South America: The Antillean connection reconsidered. In Keegan, W. F. (ed.),Emergent Horticultural Economies of the Eastern Woodlands, Southern Illinois University, Carbondale, pp. 329–344.

    Google Scholar 

  • Keegan, W. F., and DeNiro, M. J. (1988). Stable carbon and nitrogen isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet.American Antiquity 53: 320–336.

    Google Scholar 

  • Kelley, M., and Barrett, T. G., and Saunders, S. D. (1987). Diet, dental disease and transition in northeastern Native Americans.Man in the Northeast 33: 113–125.

    Google Scholar 

  • Klepinger, L. L. (1984). Nutritional assessment from bone.Annual Review of Anthropology 13: 75–96.

    Google Scholar 

  • Klepinger, L. L. (1990). Magnesium ingestion and bone magnesium concentration in paleodietary reconstruction: Cautionary evidence from an animal model.Journal of Archaeological Science 17: 513–517.

    Google Scholar 

  • Klepinger, L. L., Kuhn, J. K., and Williams, W. S. (1986). An elemental analysis of archaeological bone from Sicily as a test of predictability of diagenetic change.American Journal of Physical Anthropology 70: 325–331.

    Google Scholar 

  • Koch, P. L., Zachos, J. C., and Gingerich, P. D. (1992). Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary.Nature 358: 319–322.

    Google Scholar 

  • Korner, Ch., Farquhar, G. D., and Roksandic, Z. (1988). A global survey of carbon isotope discrimination in plants from high altitude.Oecologia 74: 623–632.

    Google Scholar 

  • Kostial, K., Gruden, N., and Durakovic, A. (1969). Intestinal absorption of calcium-47 and strontium-85 in lactating rats.Calcified Tissue Research 4: 13–19.

    Google Scholar 

  • Krueger, H. W. (1991). Exchange of carbon with biological apatite.Journal of Archaeological Science 18: 355–361.

    Google Scholar 

  • Krueger, H. W., and Sullivan, C. H. (1984). Models for carbon isotope fractionation between diet and bone. In Turnlund, J. R., and Johnson, P. E. (eds.),Stable Isotopes in Nutrition, American Chemical Society, Washington, D.C., pp. 205–220.

    Google Scholar 

  • Kyle, J. H. (1986). Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—The implications for palaeodietary research.Journal of Archaeological Science 13: 403–416.

    Google Scholar 

  • Lambert, J. B., Szpunar, C. B., and Buikstra, J. E. (1979). Chemical analysis of excavated human bone from middle and late Woodland sites.Archaeometry 21: 115–129.

    Google Scholar 

  • Lambert, J. B., Vlasak, S. M., Thometz, A. C., and Buikstra, J. E. (1982). A comparative study of the chemical analysis of ribs and femurs in Woodland populations.American Journal of Physical Anthropology 59: 289–294.

    Google Scholar 

  • Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1984a). Ancient human diet from inorganic analysis of bone.Accounts of Chemical Research 17: 298–305.

    Google Scholar 

  • Lambert, J. B., Simpson, S. V., Buikstra, J. E., and Charles, D. K. (1984b). Analysis of soil associated with Woodland burials. In Lambert, J. B. (ed.),Archaeological Chemistry III, Advances in Chemistry Series No. 205, American Chemical Society, Washington, DC, pp. 97–116.

    Google Scholar 

  • Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. (1985a). Bone diagenesis and dietary analysis.Journal of Human Evolution 14: 477–482.

    Google Scholar 

  • Lambert, J. B., Simpson, S. V., Weiner, S. G., and Buikstra, J. E. (1985b). Induced metal-ion exchange in excavated human bone.Journal of Archaeological Science 12: 85–92.

    Google Scholar 

  • Lambert, J. B., Xue, L., and Buikstra, J. E. (1989). Physical removal of contaminative inorganic material from buried human bone.Journal of Archaeological Science 16: 427–436.

    Google Scholar 

  • Lambert, J. B., Weydert, J. M., Williams, S. R., and Buikstra, J. E. (1990). Comparison of methods for the removal of diagenetic material in buried bone.Journal of Archaeological Science 17: 453–468.

    Google Scholar 

  • Lambert, J. B., Xue, L., and Buikstra, J. E. (1991). Inorganic analysis of excavated human bone after surface removal.Journal of Archaeological Science 18: 363–383.

    Google Scholar 

  • Land, L. S., Lang, J. C., and Smith, B. N. (1975). Preliminary observation on the carbon isotope compositions of some reef coral tissue and symbiotic zooxanthellal.Limnology and Oceanography 20: 283–287.

    Google Scholar 

  • Larsen, C. S. (1987). Bioarchaeological interpretations of subsistence economy and behavior from human skeletal remains. In Schiffer, M. B. (ed.),Advances in Archaeological Method and Theory, Vol. 10, Academic Press, San Diego, CA, pp. 339–445.

    Google Scholar 

  • Larsen, C. S., Schoeninger, M. J., van der Merwe, N. J., Moore, K. M., and Lee-Thorp, J. A. (1992). Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia bight.American Journal of Physical Anthropology 89: 197–214.

    Google Scholar 

  • Lee-Thorp, J. A., and van der Merwe, N. J. (1987). Carbon isotope analysis of fossil bone apatite.South African Journal of Science 83: 712–715.

    Google Scholar 

  • Lee-Thorp, J. A., and van der Merwe, N. J. (1991). Aspects of the chemistry of modern and fossil biological apatites.Journal of Archaeological Science 18: 343–354.

    Google Scholar 

  • Lee-Thorp, J. A., Sealy, J. C., and van der Merwe, N. J. (1989a). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet.Journal of Archaeological Science 16: 585–599.

    Google Scholar 

  • Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. (1989b). Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans.Journal of Human Evolution 18: 183–190.

    Google Scholar 

  • Letolle, R. (1980). Nitrogen-15 in the natural environment. In Fritz, P., and Fontes, J. Ch. (eds.),Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, pp. 407–433.

    Google Scholar 

  • Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?Geochimica et Cosmochimica Acta 48: 385–390.

    Google Scholar 

  • Lowenstam, H. A., and Weiner, S. (1989).On Biomineralization, Oxford University Press, Oxford.

    Google Scholar 

  • Lynott, M. J., Boutton, T. W., Price, J. E., and Nelson, D. E. (1986). Stable carbon isotopic evidence for maize agriculture in southeast Missouri and northeast Arkansas.American Antiquity 51: 51–65.

    Google Scholar 

  • Luz, B., Kolodny, Y., and Horowitz, M. (1984a). Fractionation of oxygen isotopes between mammalian bone phosphate and environmental drinking water.Geochimica et Cosmochimica Acta 48: 1689–1693.

    Google Scholar 

  • Luz, B., Kolodny, Y., and Kovach, J. (1984b). Oxygen isotope variations in phosphate of biogenic apatities. III. Conodonts.Earth and Planetary Science Letters 69: 255–262.

    Google Scholar 

  • MacFadden, B. J., and Bryant, J. D. (eds.), (1994). Stable isotope and trace-element geochemistry of vertebrate fossils: Interpreting ancient diets and climates.Palaeogeography, Palaeoclimatology, Palaeoecology (in press).

  • Marie, P. J., Travers, R., and Delven, E. E. (1983). Influence of magnesium supplementation on bone turnover in the normal young mouse.Calcified Tissue International 35: 755–761.

    Google Scholar 

  • Marino, B. D., and McElroy, M. B. (1991). Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose.Nature 349: 127–131.

    Google Scholar 

  • Mariotti, A. (1983). Atmospheric nitrogen is a reliable standard for natural15N abundance measurements.Nature 303: 685–687.

    Google Scholar 

  • Mariotti, A., Mariotti, F., Amarger, N., Pizelle, G., Ngambi, J., Champigny, M., and Moyse, A. (1980). Fractionnements Isotopiques de L'azote Lors des Processus, D'absorption des Nitrates et de Fixation de L'azote Atmospherique par les Plantes.Physiologie Vegetale 18: 163–181.

    Google Scholar 

  • Marshall, J. H., Liniecki, J., Lloyd, E. L., Marotti, G., Mays, C. W., Rundo, J., Sissons, H. A., and Snyder, W. S. (1973). Alkaline earth metabolism in adult man.Health Physics 24: 125–221.

    Google Scholar 

  • Masters, P. M. (1987). Preferential preservation of non-collagenous protein during bone diagenesis: Implications for chronometric and stable isotopic measurements.Geochimica et Cosmochimica Acta 51: 3209–3214.

    Google Scholar 

  • McLean, F. C., and Urist, M. R. (1968).Bone: An Introduction to the Physiology of Skeletal Tissue, University of Chicago Press, Chicago.

    Google Scholar 

  • McMillan, C. P., Parker, P. L., and Fry, B. (1980).13C/12C ratios in seagrasses.Aquatic Botany 9: 237–249.

    Google Scholar 

  • Medaglia, C. C., Little, E. A., and Schoeninger, M. J. (1990). Late Woodland diet on Nantucket Island: A study using stable isotope ratios.Bulletin of the Massachusetts Archaeological Society 51: 49–60.

    Google Scholar 

  • Mertz, W. (1981). The essential trace elements.Science 213: 1332–1338.

    Google Scholar 

  • Miksicek, C. H. (1987). Formation processes of the archaeobotanical record. In Schiffer, M. B. (ed.),Advances in Archaeological Method and Theory, Vol. 10, Academic Press, New York, pp. 211–247.

    Google Scholar 

  • Miller, E. R., Ullrey, D. E., Zutaut, C. L., Baltzer, B. V., Schmidt, D. A., Hoefer, J. A., and Luecke, R. W. (1965). Magnesium requirement of the baby pig.Journal of Nutrition 85: 13–20.

    Google Scholar 

  • Minagawa, M., and Wada, E. (1984). Stepwise enrichment of15N along food chains: Further evidence and the relation between δ15N and animal age.Geochimica et Cosmochimica Acta 48: 1135–1140.

    Google Scholar 

  • Mook, W. G., Koopmans, M., Carter, A. F., and Keeling, C. D. (1983). Seasonal, latitudinal and secular variation in the abundance and isotopic ratios of atmospheric carbon dioxide. 1. Results from land stations.Journal of Geophysical Research 88: 10915–10933.

    Google Scholar 

  • Mooney, H. A., Troughton, J. H., Berry, J. A. (1977). Carbon isotope ratio measurements of succulent plants in southern Africa.Oecologia 30: 295–305.

    Google Scholar 

  • Morgan, M. E., and Schoeninger, M. J. (1989). Zinc and strontium as dietary indicators in a modern tropical community. Poster presented a 58th Annual Meeting of the American Association of Physical Anthropologists, San Diego, CA.American Journal of Physical Anthropology 78: 276 (abstr.).

    Google Scholar 

  • Morris, E. R., and O'Dell, B. L. (1961). Magnesium deficiency in the guinea pig. Mineral composition of tissues and distribution of acid-soluble phosphorus.Journal of Nutrition 75: 77–85.

    Google Scholar 

  • Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. (1986). Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic composition of bone.Geochimica et Cosmochimica Acta 50: 1941–1949.

    Google Scholar 

  • Nelson, D. A., and Sauer, N. J. (1984). An evaluation of postdepositional changes in the trace element content of human bone.American Antiquity 49: 141–147.

    Google Scholar 

  • Neuman, W. F. (1980). Bone material and calcification mechanisms. In Urist, M. R. (ed.),Fundamental and Clinical Bone Physiology, J. B. Lippincott, Philadelphia, pp. 83–107.

    Google Scholar 

  • Neuman, W. F., and Neuman, M. W. (1958).The Chemical Dynamics of Bone Mineral, University of Chicago Press, Chicago.

    Google Scholar 

  • Noe-Nygaard, N. (1988). δ13C-values of dog bones reveal the nature of changes in man's food resources at the Mesolithic-Neolithic transition, Denmark.Isotope Geoscience 73: 87–96.

    Google Scholar 

  • Norr, L. (1981). Prehistoric Costa Rican diet as determined from stable carbon isotope ratios in bone collagen.American Journal of Physical Anthropology 54: 258–259.

    Google Scholar 

  • Norr, L. (1982). A new chemical analysis for the determination of a marine fauna component in prehistoric diets.American Journal of Physical Anthropology 57: 214.

    Google Scholar 

  • Norr, L. (1991).Nutritional Consequences of Prehistoric Subsistence Strategies in Lower Central America, Ph.D. dissertation, Department of Anthropology, University of Illinois, Urbana.

    Google Scholar 

  • O'Dell, B. L. (1972). Dietary factors that affect biological availability of trace elements.Annals of the New York Academy of Sciences 199: 70–81.

    Google Scholar 

  • Odum, H. T. (1951). Notes on the strontium content of sea water, celestite radiolaria, and strontianite snail shells.Science 114: 211–213.

    Google Scholar 

  • Odum, H. T. (1957) Biogeochemical deposition of strontium.Institute of Marine Science Publications 4: 38–114 (University of Texas, Port Aransas).

    Google Scholar 

  • Ogden, J. A. (1980). Chondro-osseous development and growth. In Urist, M. R. (ed.),Fundamental and Clinical Bone Physiology, J. B. Lippincott, Philadelphia, pp. 108–171.

    Google Scholar 

  • O'Leary, M. H. (1981). Carbon isotope fractionation in plants.Phytochemistry 20: 553–567.

    Google Scholar 

  • O'Leary, M. H. (1988). Carbon isotopes in photosynthesis.BioScience 38: 328–336.

    Google Scholar 

  • Ornter, D. J., and Aufderheide, A. C. (eds.) (1991).Human Paleopathology: Current Syntheses and Future Options, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Ortner, D. J., and Aufderheide, A. C. (eds.) (1991).Human Paleopathology: Current Syntheses and Future Options, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Ortner, D. J., and Putschar, W. G. J. (1985).Identification of Pathological Conditions in Human Skeletal Remains, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • O'Shea, J. M. (1984).Mortuary Variability: An Archaeological Investigation, Academic Press, New York.

    Google Scholar 

  • Park, R., and Epstein, S. (1961). Metabolic fractionation of13C and12C in plants.Plant Physiology 36: 133–138.

    Google Scholar 

  • Pate, F. D. (1984).Mortuary Practices and Paleodiet as Archaeological Signatures of Social Organization and Status at Roonka on the Lower Murray River of South Australia, M.A. thesis, Department of Anthropology, Brown University, Providence, RI.

    Google Scholar 

  • Pate, F. D. (1989).Postmortem Chemical Changes in Buried Bone: An Investigation of Environmental Formation Processes at the Roonka Archaeological Site, South Australia, Ph.D. dissertation, Department of Anthropology, Brown University, Providence, RI.

    Google Scholar 

  • Pate, F. D. (1994). Stable carbon isotope assessment of hunter-gatherer mobility in prehistoric South Australia.Journal of Archaeological Science (in press).

  • Pate, F. D., and Brown, K. A. (1985). The stability of bone strontium in the geochemical environment.Journal of Human Evolution 14: 483–491.

    Google Scholar 

  • Pate, F. D., and Hutton, J. T. (1987). Bone Sr, Ba, and Mg variability in marine and terrestrial mammals from the Adelaide region, South Australia. Unpublished manuscript.

  • Pate, F. D., and Hutton, J. T. (1988). The use of soil chemistry data to address postmortem diagenesis in bone mineral.Journal of Archaeological Science 15: 729–739.

    Google Scholar 

  • Pate, F. D., and Schoeninger, M. J. (1993). Stable carbon isotope ratios in bone collagen as indicators of marine and terrestrial dietary composition in southeastern South Australia: A preliminary report. In Fankhauser, B. L., and Bird, J. R. (eds.),Archaeometry: Current Australasian Research, Australian National University Press, Canberra, pp. 38–44.

    Google Scholar 

  • Pate, F. D., Hutton, J. T., and Norrish, K. (1989). Ionic exchange between soil solution and bone: Toward a predictive model.Applied Geochemistry 4: 303–316.

    Google Scholar 

  • Pate, F. D., Hutton, J. T., Gould, R. A., and Pretty, G. L. (1991). Alterations ofin vivo elemental dietary signatures in archaeological bone: Evidence from the Roonka Flat Dune, South Australia.Archaeology in Oceania 26: 58–69.

    Google Scholar 

  • Pellegrino, E. D., and Biltz, R. M. (1965). The composition of human bone in uremia.Medicine 44: 397–418.

    PubMed  Google Scholar 

  • Peng, T. H., and Freyer, H. D. (1986). Revised estimates of atmospheric CO2 variations based on the tree-ring13C record. In Trabalka, J. R., and Reichle, D. E. (eds.),The Changing Carbon Cycle: A Global Analysis, Springer-Verlag, New York, pp. 151–159.

    Google Scholar 

  • Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies.Annual Review of Ecology and Systematics 18: 293–320.

    Google Scholar 

  • Posner, A. S. (1985). The mineral of bone.Clinical Orthopaedics 200: 87–99.

    Google Scholar 

  • Price, T. D. (1985). Late archaic subsistence in the midwestern United States.Journal of Human Evolution 14: 449–459.

    Google Scholar 

  • Price, T. D. (1989a). Reconstruction of mesolithic diets. In Bonsall, C. (ed.),Mesolithic in Europe, John Donald, Edinburgh, pp. 48–59.

    Google Scholar 

  • Price, T. D. (ed.) (1989b).The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge.

    Google Scholar 

  • Price, T. D., and Kavanagh, M. (1982). Bone composition and the reconstruction of diet: Examples from the midwestern United States.Mid-Continental Journal of Archaeology 7: 61–79.

    Google Scholar 

  • Price, T. D., Schoeninger, M. J., and Armelagos, G. J. (1985a). Bone chemistry and past behavior: An overview.Journal of Human Evolution 14: 419–447.

    Google Scholar 

  • Price, T. D., Connor, M., and Parsen, J. D. (1985b). Bone chemistry and the reconstruction of diet: Strontium discrimination in white-tail deer.Journal of Archaeological Science 12: 419–442.

    Google Scholar 

  • Price, T. D., Swick, R. W., and Chase, E. P. (1986). Bone chemistry and prehistoric diet: Strontium studies of laboratory rats.American Journal of Physical Anthropology 70: 365–375.

    Google Scholar 

  • Price, T. D., Blitz, J., Burton, J., and Ezzo, J. A. (1992). Diagenesis in prehistoric bone: Problems and solutions.Journal of Archaeological Science 19: 513–529.

    Google Scholar 

  • Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., and van der Merwe, N. (1992). A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan.Isotope Geoscience 94: 183–192.

    Google Scholar 

  • Radosevich, S. C. (1989a).Diet or Diagenesis? An Evaluation of the Trace Element Analysis of Bone, Ph.D. dissertation, Department of Anthropology, University of Oregon, Portland.

    Google Scholar 

  • Radosevich, S. C. (1989b). Geochemical techniques applied to bone from South Asia and Alaska: Neither God's truth or hocus-pocus.Wisconsin Journal of Archaeology 2: 93–102.

    Google Scholar 

  • Radosevich, S. C. (1993). The six deadly sins of trace element analysis = A case of wishful thinking in science. In Sandford, M. K. (ed.),Investigations of Ancient Human Tissues: Chemical Analysis in Anthropology, Gordon and Breach, New York, pp. 269–321.

    Google Scholar 

  • Raghavendra, A. S., and Das, V. S. R. (1978). The occurrence of C4 photosynthesis: A supplementary list of C4 plants reported during late 1974-mid 1977.Photosynthetica 12: 200–208.

    Google Scholar 

  • Roksandic, Z., Minagawa, M., and Akazawa, T. (1988). Comparative analysis of dietary habits between Jomon and Ainu hunter-gatherers from stable carbon isotopes of human bone.Journal of the Anthropological Society of Nippon 96: 391–404.

    Google Scholar 

  • Runia, L. T. (1987a). Strontium and calcium distribution in plants: Effects on palaeodietary studies.Journal of Archaeological Science 14: 599–608.

    Google Scholar 

  • Runia, L. T. (1987b). The chemical analysis of prehistoric bones: A paleodietary and ecoarchaeological study of Bronze Age West-Friesland.British Archaeological Reports, International Series 363, Oxford.

  • Runia, L. T. (1988). Discrimination factors on different trophic levels in relation to trace element content in human bones. In Grupe, G., and Herrmann, B. (eds.),Trace Elements in Environmental History, Springer-Verlag, Berlin, pp. 91–101.

    Google Scholar 

  • Sackett, W. M. (1989). Stable isotope studies on organic matter in the marine environment. In Fritz, P., and Fontes, J. Ch. (eds.),Handbook of Environmental Isotope Geochemistry, Vol. 3, Elsevier, Amsterdam, pp. 139–169.

    Google Scholar 

  • Saino, T., and Hattori, A. (1980).15N natural abundance in oceanic suspended particulate matter.Nature 283: 752–754.

    Google Scholar 

  • Salisbury, F. B., and Ross, C. W. (1991).Plant Physiology, 4th ed., Wadsworth, Belmont, CA.

    Google Scholar 

  • Sandford, M. K. (1992). A reconsideration of trace element analysis in prehistoric bone. In Saunders, S. R., and Katzenberg, M. A. (eds.),Skeletal Biology of Past Peoples: Research Methods, Wiley-Liss, New York, pp. 79–103.

    Google Scholar 

  • Schoeninger, M. J. (1979a). Dietary reconstruction at Chalcatzingo, a Formative Period site in Morelos, Mexico.University of Michigan Museum of Anthropology Technical Report 9.

  • Schoeninger, M. J. (1979b). Diet and status at Chalcatzingo: Some empirical and technical aspects of strontium analysis.American Journal of Physical Anthropology 51: 295–310.

    Google Scholar 

  • Schoeninger, M. J. (1980).Changes in Human Subsistence Activities from the Middle Paleolithic to the Neolithic Period in the Middle East, Ph.D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.

    Google Scholar 

  • Schoeninger, M. J. (1981). The agricultural “revolution”: Its effects on human diet in Prehistoric Iran and Israel.Paleorient 7: 73–91.

    Google Scholar 

  • Schoeninger, M. J. (1982). Diet and the evolution of modern form in the Middle East.American Journal of Physical Anthropology 58: 37–52.

    Google Scholar 

  • Schoeninger, M. J. (1985). Trophic effects on15N/14N and13C/12C ratios in bone collagen and strontium levels in bone mineral.Journal of Human Evolution 14: 515–525.

    Google Scholar 

  • Schoeninger, M. J. (1989). Reconstructing prehistoric human diet. In Price, T. D. (ed.),The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 38–67.

    Google Scholar 

  • Schoeninger, M. J., and DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals.Geochimica et Cosmochimica Acta 48: 625–639.

    Google Scholar 

  • Schoeninger, M. J., and Peebles, C. S. (1981). Effects of mollusc eating on human bone strontium levels.Journal of Archaeological Science 8: 391–397.

    Google Scholar 

  • Schoeninger, M. J., DeNiro, M. J., and Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet.Science 220: 1381–1383.

    Google Scholar 

  • Schoeninger, M. J., Moore, K. M., Murray, M. L., and Kingston, J. D. (1989). Detection of bone preservation in archaeological and fossil samples.Applied Geochemistry 4: 281–292.

    Google Scholar 

  • Schoeninger, M. J., van der Merwe, N. J., Moore, K., Lee-Thorp., J., and Larsen, C. D. (1990). Decrease in diet quality between the Prehistoric and Contact Periods. In Larsen, C. S. (ed.),The Archaeology of Mission Santa Catalina de Gaule: 2. Biocultural Interpretations of a Population in Transition, Anthropological Papers of the American Museum of Natural History, Vol. 68, pp. 78–93.

  • Schroeder, H. A., Nason, A. P., and Tipton, I. H. (1968). Essential metals in man: Magnesium.Journal of Chronic Diseases 21: 815–841.

    Google Scholar 

  • Schroeder, H. A., Tipton, I. H., and Nason, A. P. (1972). Trace metals in man: Strontium and barium.Journal of Chronic Diseases 25: 491–517.

    Google Scholar 

  • Schurr, M. R. (1989).The Relationship Between Mortuary Treatment and Diet at the Angel Site, Ph.D. dissertation, Department of Anthropology, Indiana University, Bloomington.

    Google Scholar 

  • Schurr, M. R. (1992). Isotopic and mortuary variability in a middle Mississippian population.American Antiquity 57: 300–320.

    Google Scholar 

  • Schwarcz, H. P. (1991). Some theoretical aspects of isotope paleodiet studies.Journal of Archaeological Science 18: 261–276.

    Google Scholar 

  • Schwarcz, H. P., and Schoeninger, M. J. (1991). Stable isotope analyses in human nutritional ecology.Yearbook of Physical Anthropology 34: 283–321.

    Google Scholar 

  • Schwarcz, H. P., Melbye, J., Katzenberg, M. A., and Knyf, M. (1985). Stable isotopes in human skeletons of southern Ontario: Reconstructing palaeodiet.Journal of Archaeological Science 12: 187–206.

    Google Scholar 

  • Sealy, J. C. (1984).Stable Carbon Isotopic Assessment of Prehistoric Diets in the Southwestern Cape, South Africa, M.Sc. thesis, Department of Archaeology, University of Cape Town.

  • Sealy, J. C. (1986). Stable carbon isotopes and prehistoric diets in the southwestern Cape Province, South Africa.British Archaeological Reports, International Series 293, Oxford.

  • Sealy, J. C., and Sillen, A. (1988). Sr and Sr/Ca in marine and terrestrial foodwebs in the southwestern Cape, South Africa.Journal of Archaeological Science 15: 425–438.

    Google Scholar 

  • Sealy, J. C., and van der Merwe, N. J. (1985). Isotope assessment of Holocene human diets in the southwestern Cape, South Africa.Nature 315: 138–140.

    Google Scholar 

  • Sealy, J. C., and van der Merwe, N. J. (1986). Isotope assessment and the seasonal-mobility hypothesis in the Southwestern Cape of South Africa.Current Anthropology,27: 135–150.

    Google Scholar 

  • Sealy, J. C., and van der Merwe, N. J. (1988). Social, spatial and chronological patterning in marine food use as determined by δ13C measurements of Holocene human skeletons from the Southwestern Cape, South Africa.World Archaeology 20: 87–102.

    Google Scholar 

  • Sealy, J. C., van der Merwe, N. J., Lee-Thorp, J. A., and Lanham, J. L. (1987). Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing.Geochimica et Cosmochimica Acta 51: 2707–2717.

    Google Scholar 

  • Sealy, J. C., van der Merwe, N. J., Sillen, A., Kruger, F. J., and Krueger, H. W. (1991).87Sr/86Sr as a dietary indicator in modern and archaeological bone.Journal of Archaeological Science 18: 399–416.

    Google Scholar 

  • Shearer, G., and Kohl, D. H. (1986). N2-fixation in field settings: Estimations based on natural15N abundance.Australian Journal of Plant Physiology 13: 699–756.

    Google Scholar 

  • Sherr, E. B. (1982). Carbon isotope composition of organic seston and sediments in a Georgia salt marsh estuary.Geochimica et Cosmochimica Acta 46: 1227–1232.

    Google Scholar 

  • Sighinolfi, G. P., Sartono, S., and Artioli, G. (1993). Chemical and mineralogical studies on hominid remains from Sangiran, central Java (Indonesia).Journal of Human Evolution 24: 57–68.

    Google Scholar 

  • Sillen, A. (1981a).Strontium and Diet at Hayonim Cave, Israel. An Evaluation of the Strontium/Calcium Technique for Investigating Prehistoric Diets, Ph.D. dissertation, Department of Anthropology, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Sillen, A. (1981b). Strontium and diet at Hayonim Cave.American Journal of Physical Anthropology 56: 131–137.

    Google Scholar 

  • Sillen, A. (1986). Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils of the Omo Shangura formation.Paleobiology 12: 311–323.

    Google Scholar 

  • Sillen, A. (1988). Elemental and isotopic analyses of mammalian fauna from southern Africa and their implications for paleodietary research.American Journal of Physical Anthropology 76: 49–60.

    Google Scholar 

  • Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In Price, T. D. (ed.),The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 211–229.

    Google Scholar 

  • Sillen, A. (1992). Strontium-calcium ratios (Sr/Ca) ofAustralopithecus robustus and associated fauna with Swartkrans.Journal of Human Evolution 23: 495–516.

    Google Scholar 

  • Sillen, A., and Kavanagh, M. (1982). Strontium and paleodietary research: A review.Yearbook of Physical Anthropology 25: 67–90.

    Google Scholar 

  • Sillen, A., and LeGeros, R. (1991). Solubility profiles of synthetic apatites and of modern and fossil bones.Journal of Archaeological Science 18: 385–397.

    Google Scholar 

  • Sillen, A., and Smith, P. (1984). Weaning patterns are reflected in strontium-calcium ratios of juvenile skeletons.Journal of Archaeological Science 11: 237–245.

    Google Scholar 

  • Sillen, A., Sealy, J. C., and van der Merwe, N. J. (1989). Chemistry and paleodietary research: No more easy answers.American Antiquity 54: 504–512.

    Google Scholar 

  • Smith, B. N., and Epstein, S. (1971). Two categories of13C/12C ratios for higher plants.Plant Physiology 47: 380–384.

    Google Scholar 

  • Smith, B. N., Oliver, J., and McMillan, C. (1976). Influence of carbon source, oxygen concentration, light intensity, and temperature on13C/12C ratios in plant tissues.Botanical Gazette 137: 99–104.

    Google Scholar 

  • Smith, B. S. W., and Field, A. C. (1963). Effect of age on magnesium deficiency in rats.British Journal of Nutrition 17: 591–600.

    Google Scholar 

  • Smith, J. C., and Halsted, J. A. (1970). Clay ingestion (geophagia) as a source of zinc for rats.Journal of Nutrition 100: 973–980.

    Google Scholar 

  • Spadaro, J. A. (1969).Trace Metal Ions in Bone and Collagen, Ph.D. dissertation, Department of Physics, Syracuse University, Syracuse, NY.

    Google Scholar 

  • Spencer, H., Li, M., Samachson, J., and Laszio, D. (1960). Metabolism of strontium-85 and calcium-45 in man.Metabolism 9: 916–925.

    Google Scholar 

  • Spencer, H., Warren, J. M., Kramer, L., and Samachson, J. (1973). Passage of strontium and calcium across the intestine in man.Clinical Orthopaedics and Related Research 91: 225–234.

    Google Scholar 

  • Spielmann, K. A., Schoeninger, M. J., and Moore, K. (1990). Plains-Pueblo interdependence and human diet at Pecos Pueblo, New Mexico.American Antiquity 55: 745–765.

    Google Scholar 

  • Spiker, E. C., and Schemel, L. E. (1979). Distribution and stable isotope composition of carbon in San Francisco Bay. In Conomos, T. J. (ed.),San Francisco Bay: The Urbanized Estuary, Pacific Division of the American Association for the Advancement of Science, San Francisco, pp. 195–212.

    Google Scholar 

  • Stafford, T. W., Jull, A. J. T., Brendel, K., Duhamel, R. C., and Donahue, D. (1987). Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for Radioisotope Analysis.Radiocarbon 29: 24–44.

    Google Scholar 

  • Steinbock, R. T. (1976).Paleopathological Diagnosis and Interpretation, Charles C Thomas, Springfield IL.

    Google Scholar 

  • Stothers, D. M., and Bechtel, S. K. (1987). Stable carbon isotope analysis: An inter-regional perspective.Archaeology of Eastern North America 15: 137–154.

    Google Scholar 

  • Sullivan, C. H., and Krueger, H. W. (1981). Carbon isotope analysis of separate chemical phases in modern and fossil bone.Nature 292: 333–335.

    Google Scholar 

  • Sweeney, R. E., Liu, K. K., and Kaplan, I. R. (1978). Oceanic nitrogen isotopes and their uses in determining the sources of sedimentary nitrogen. In Robinson, B. W. (ed.),Stable Isotopes in the Earth Sciences, Department of Scientific and Industrial Research, Wellington, New Zealand, pp. 9–26.

    Google Scholar 

  • Szpunar, C. B. (1977).Atomic Absorption Analysis of Archaeological Remains: Human Ribs from Woodland Mortuary Sites, Ph.D. dissertation, Department of Chemistry, Northwestern University, Evanston, IL.

    Google Scholar 

  • Tan, F. C., and Strain, P. M. (1983). Sources, sinks, and distribution of organic carbon in the St. Lawrence Estuary, Canada.Geochimica et Cosmochimica Acta 47: 125–132.

    Google Scholar 

  • Tanaka, G. I., Kawamura, H., and Nomura, E. (1981). Reference Japanese man. II. Distribution of strontium in the skeleton and in the mass of mineralized bone.Health Physics 40: 601–614.

    Google Scholar 

  • Tauber, H. (1981).13C evidence for dietary habits of prehistoric man in Denmark.Nature 292: 332–333.

    Google Scholar 

  • Terri, J. A. (1982a). Carbon isotopes and the evolution of C4 photosynthesis and crassulacean acid metabolism. In Nitecki, M. H. (ed.),Biochemical Aspects of Evolutionary Biology, University of Chicago Press, Chicago, pp. 3–130.

    Google Scholar 

  • Terri, J. A. (1982b). Photosynthetic variation in the Crassulaceae. In Ting, I. P., and Gibbs, M. (eds.),Crassulacean Acid Metabolism, American Society of Plant Physiology, Rockville, MD, pp. 244–259.

    Google Scholar 

  • Thackeray, J. F., van der Merwe, N. J., Lee-Thorp, J. A., Sillen, A., Lanham, J. L., Smith, R., Keyser, A., and Monteiro, P. M. S. (1990). Changes in carbon isotope ratios in the late Permian recorded in therapsid tooth apatite.Nature 347: 751–753.

    Google Scholar 

  • Tiessen, H., Karamanos, R. E., Stewart, J. W. B., and Selles, F. (1984). Natural nitrogen-15 abundance as an indicator of soil organic matter transformations in native and cultivated soils.Soil Science Society of America Journal 48: 312–315.

    Google Scholar 

  • Tieszen, L. L., and Fagre, T. (1993). Carbon isotopic variability in modern and archaeological maize.Journal of Archaeological Science 20: 25–40.

    Google Scholar 

  • Tieszen, L. L., Bouttonn, T. W., Tesdahl, K. G., and Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet.Oecologia 57: 32–37.

    Google Scholar 

  • Trautz, O. R. (1967). Crystalline organization of dental mineral. In Miles, A. E. D. (ed.),Structural and Chemical Organization of Teeth, Vol. 2, Academic Press, New York, pp. 165–200.

    Google Scholar 

  • Triffitt, J. T. (1980). The organic matrix of bone tissue. In Urist, M. R. (ed.),Fundamental and Clinical Bone Physiology, J. B. Lippincott, Philadelphia, pp. 45–82.

    Google Scholar 

  • Turekian, K. K., and Kulp, J. L. (1956). The geochemistry of strontium.Geochimica et Cosmochimica Acta 10: 245–296.

    Google Scholar 

  • Turner, G. L., Bergersen, F. J., and Tantala, H. (1983). Natural enrichment of15N during decomposition of plant material in soils.Soil Biology and Biochemistry 15: 495–497.

    Google Scholar 

  • Tuross, N. (1989). Albumin preservation in the Taima-Taima mastodon skeleton.Applied Geochemistry 4: 255–259.

    Google Scholar 

  • Tuross, N., Eyre, D. R., Holtrop, M. E., Glimcher, M. J., and Hare, P. E. (1980). Collagen in bone. In Hare, P. E., Hoering, T. C., and Kling, K. (eds.),Biogeochemistry of Amino Acids, Wiley, New York, pp. 53–63.

    Google Scholar 

  • Tuross, N., Fogel, M. L., and Hare, P. E. (1988). Variability in the preservation of the isotopic composition of collagen from fossil bone.Geochimica et Cosmochimica Acta 52: 929–935.

    Google Scholar 

  • Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W., and Hare, P. E. (1989a). Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones.Applied Geochemistry 4: 261–270.

    Google Scholar 

  • Tuross, N., Behrensmeyer, A. K., and Eanes, E. D. (1989b). Strontium increases and crystallinity changes in taphonomic and archaeological bone.Journal of Archaeological Science 16: 661–672.

    Google Scholar 

  • Ubelaker, D. H., and Verano, J. W. (eds.) (1992).Disease and Demography in the Americas: Changing Patterns Before and After 1492, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Urey, H. C. (1947). The thermodynamic properties of isotopic substances.Journal of the Chemical Society 1947: 562.

    Google Scholar 

  • Urist, M. R. (ed.) (1980).Fundamental and Clinical Bone Physiology, J. B. Lippincott, Philadelphia.

    Google Scholar 

  • van der Merwe, N. J. (1978). Carbon 12 vs. carbon 13.Early Man 2: 11–13.

    Google Scholar 

  • van der Merwe, N. J. (1982). Carbon isotopes, photosynthesis, and archaeology.American Scientist 70: 596–606.

    Google Scholar 

  • van der Merwe, N. J. (1986). Carbon isotope ecology of herbivores and carnivores. In van Zinderen Bakker, E. M., Coetzee, J. A., and Scott, L. (eds.),Paleoecology of Africa, Vol. 17, A. A. Balkema, Rotterdam.

    Google Scholar 

  • van der Merwe, N. J. (1989). Natural variation in13C concentration and its effect on environmental reconstruction using13C/12C ratios in animal bones. In Price, T. D. (ed.),The Chemistry of Prehistoric Human Bone, Cambridge University Press, Cambridge, pp. 105–125.

    Google Scholar 

  • van der Merwe, N. J., and Medina, E. (1989). Photosynthesis and13C/12C ratios in Amazonian rain forests.Geochimica et Cosmochimica Acta 53: 1091–1094.

    Google Scholar 

  • van der Merwe, N. J., and Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia.Journal of Archaeological Science 18: 249–259.

    Google Scholar 

  • van der Merwe, N. J., and Vogel, J. C. (1978).13C concentration of human collagen as a measure of prehistoric diet in woodland North America.Nature 276: 815–816.

    Google Scholar 

  • van der Merwe, N. J., Roosevelt, A. C., and Vogel, J. C. (1981). Isotopic evidence for prehistoric subsistence change at Parmana, Venezuela.Nature 292: 536–538.

    Google Scholar 

  • van der Merwe, N. J., Lee-Thorp, J., and Bell, R. H. V. (1988). Carbon isotopes as indicators of elephant diets and African environments.African Journal of Ecology 26: 163–172.

    Google Scholar 

  • Virginia, R. A., and Delwiche, C. C. (1982). Natural15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems.Oecologia 54: 317–325.

    Google Scholar 

  • Vogel, J. C. (1978). Isotopic assessment of the dietary habits of ungulates.South African Journal of Science 74: 298–301.

    Google Scholar 

  • Vogel, J. C. (1982). Koolstofisotoopsamestelling van Plantproteine.Die Suid-Afrikaanse Tydskrif vir Natguurwetenskap en Tegnologie 1: 7–8.

    Google Scholar 

  • Vogel, J. C., and van der Merwe, N. J. (1977). Isotopic evidence for early maize cultivation in New York State.American Antiquity 42: 238–242.

    Google Scholar 

  • Vogel, J. C., Fuls, A., and Ellis, R. P. (1978). The geographical distribution of Kranz grass in South Africa.South African Journal of Science 74: 209–215.

    Google Scholar 

  • Vogel, J. C., Talma, A. S., Hall-Martin, A. J., and Viljoen, P. J. (1990). Carbon and nitrogen isotopes in elephants.South African Journal of Science 86: 147–150.

    Google Scholar 

  • Wada, E. (1980). Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In Goldberg, E. D., Horibe, Y., and Saruhaski, K. (eds.), Uchida Rokakuho, Tokyo, pp. 375–398.

    Google Scholar 

  • Walker, P. L., and DeNiro, M. J. (1986). Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in southern California.American Journal of Physical Anthropology 71: 51–61.

    Google Scholar 

  • Walser, M., and Robinson, B. (1963). Renal excretion and tubular reabsorption of calcium and strontium. In Wasserman, R. H. (ed.),The Transfer of Calcium and Strontium Across Biological Membranes, Academic Press, New York, pp. 305–326.

    Google Scholar 

  • Weld, S. R. (1985). Carbon-13 evidence for ancient diet in China. English translation of paper by Cai Lian-zhen and Qui Shih-hua (manuscript in author's possession).

  • Wessen, G., Ruddy, F. H., Gustafson, C. E., and Irwin, H. E. (1977). Characterization of archaeological bone by neutron activation analysis.Archaeometry 19: 200–204.

    Google Scholar 

  • Wessen, G., Ruddy, F. H., Gustafson, C. E., and Irwin, H. E. (1978). Trace element analysis in the characterization of archaeological bone. In Carter, G. F. (ed.),Archaeological Chemistry II, American Chemical Society, Washington, DC, pp. 99–108.

    Google Scholar 

  • White, C. D., and Schwarcz, H. P. (1989). Ancient Maya diet: As inferred from isotopic and elemental analysis of human bone.Journal of Archaeological Science 16: 451–474.

    Google Scholar 

  • White, E. M., and Hannus, L. A. (1983). Chemical weathering of bone in archaeological soils.American Antiquity 48: 316–322.

    Google Scholar 

  • Whitmer, A. M., Ramenofsky, A. F., Thomas, J., Thibodeaux, L. J., Field, S. D., and Miller, B. J. (1989). Stability of instability: The role of diffusion in trace element studies. In Schiffer, M. B. (ed.),Archaeological Method and Theory, Vol. 1, University of Arizona Press, Tucson, pp. 205–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pate, F.D. Bone chemistry and paleodiet. J Archaeol Method Theory 1, 161–209 (1994). https://doi.org/10.1007/BF02231415

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02231415

Key words

Navigation