Skip to main content
Log in

Turing structures and turbulence in a chemical reaction-diffusion system

  • Published:
Open Systems & Information Dynamics

Abstract

Turing structures and turbulence are analyzed within the framework of a model for the chlorine dioxide—iodine—malonic acid reaction. This reaction has recently provided the first experimental results on the formation of stationary chemical patterns under laboratory conditions. The model is distinguished from previously studied simple reaction-diffusion models by showing a strongly subcritical transition to stripes. This makes it possible for a great variety of localized structures to emerge and be stable. The dynamics of phase singularities and the formation and breakdown of chemical spirals are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Turing, Phil. Trans. R. Soc. Lond.B327, 37 (1952).

    Google Scholar 

  2. J. D. Murray:Mathematical Biology. Springer-Verlag, Berlin, 1989. For a short review see e.g. J. D. Murray, Bul. Math. Biol.52, 119 (1990).

    Google Scholar 

  3. G. Nicolis and I. Prigogine:Self-Organization in Nonequilibrium Systems, Wiley, New York, 1977.

    Google Scholar 

  4. H. L. Swinney and J. P. Gollub (eds.):Hydrodynamic Instabilities and Transition to Turbulence, Springer, Berlin, Second Edition 1985.

    Google Scholar 

  5. P. Manneville:Dissipative Structures and Weak Turbulence, Academic Press, Boston, 1990.

    Google Scholar 

  6. A. C. Newell and J. V. Moloney:Nonlinear Optics, Addison-Wesley, Redwood City, 1992.

    Google Scholar 

  7. G. M. Edelman:Topobiology. An Introduction to Molecular Biology, Basic Books, New York, 1988.

    Google Scholar 

  8. H. Meinhardt:Models of Biological Pattern Formation, Academic Press, London, 1982.

    Google Scholar 

  9. R. J. Field and M. Burger (eds.):Oscillations and Traveling Waves in Chemical Systems, Wiley and Sons, New York, 1985.

    Google Scholar 

  10. S. C. Müller, Th. Plesser and B. Hess, Science230, 661 (1985).

    Google Scholar 

  11. Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L. Swinney, and W. Y. Tam, Nature (London)329, 619 (1987).

    Google Scholar 

  12. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys. Rev. Lett.64, 2953 (1990).

    Google Scholar 

  13. Q. Ouyang and H. L. Swinney, Nature (London)352, 610 (1991).

    Google Scholar 

  14. R. D. Vigil, Q. Ouyang, and H. L. Swinney, Physica A188, 17 (1992).

    Google Scholar 

  15. I. Lengyel, S. Kádár, and I. R. Epstein, Science259, 493 (1993).

    Google Scholar 

  16. O. Jensen, V. O. Pannbacker, G. Dewel, and P. Borckmans, Phys. Lett. A179, 91 (1993).

    Google Scholar 

  17. V. O. Pannbacker, O. Jensen, G. Dewel, P. Borckmans, and E. Mosekilde, in Proc. NATO ARW onSpatio-Temporal Patterns in Nonequilibrium Complex Systems, Santa Fe, New Mexico, April 13–17, 1993

  18. P. Borckmans, G. Dewel, and A. De Wit inSeeds: Genesis of Natural and Artificial Forms, Le Biopole Végétal, Amiens, 1991.

    Google Scholar 

  19. A. De Wit, G. Dewel, P. Borckmans, and D. Walgraef, Physica D61, 289 (1992).

    Google Scholar 

  20. P. Borckmans, A. De Wit, and G. Dewel, Physica A188, 137 (1992).

    Google Scholar 

  21. I. Lengyel, G. Rábai and I. R. Epstein, J. Am. Chem. Soc.112, 4606 (1990).

    Google Scholar 

  22. I. Lengyel, G. Rábai and I. R. Epstein, J. Am. Chem. Soc.112, 9104 (1990).

    Google Scholar 

  23. I. Lengyel and I. R. Epstein, Proc. Natl. Acad. Sci. USA89, 3977 (1992).

    Google Scholar 

  24. A. Hunding and P. G. Sørensen, J. Math. Biol.26, 27 (1988).

    Google Scholar 

  25. F. H. Busse, J. Fluid Mech.30, 625 (1967).

    Google Scholar 

  26. L. M. Pismen, J. Chem. Phys.72, 1900 (1980).

    Google Scholar 

  27. N. I. Meyer and E. Mosekilde, Phys. Lett. A24, 155 (1967).

    Google Scholar 

  28. V. Dufiet and J. Boissonade, Physica A188, 158 (1992).

    Google Scholar 

  29. O. Jensen, V. O. Pannbacker, E. Mosekilde, G. Dewel, and P. Borckmans, Phys. Rev. E50, 736 (1994).

    Google Scholar 

  30. Y. Pomeau, Physica D23, 3 (1986).

    Google Scholar 

  31. O. Thual and S. Fauve, J. Phys. France49, 1829 (1988).

    Google Scholar 

  32. J. J. Perraud, K. Agladze, E. Dulas, and P. De Kepper, Physica A188, 1 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, O., Pannbacker, V.O., Mosekilde, E. et al. Turing structures and turbulence in a chemical reaction-diffusion system. Open Syst Inf Dyn 3, 215–235 (1995). https://doi.org/10.1007/BF02228817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02228817

Keywords

Navigation