Skip to main content
Log in

Heterotrophic nitrogen fixation (acetylene reduction) associated to flooded rice: A modified measurement technique in the field

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A modifiedin situ technique for measuring heterotrophic nitrogen fixing (acetylene reducing) activity associated to rice is proposed. Ethylene evolution rates measured in opaque cylinders covering the stems of rice plants which have been cut 10 cm over the water level were found independent of the diurnal cycle. Cutting of the leaves resulted in decreased variation between plants and suppression of the acceleration of ethylene evolution rate after 12 h incubation as compared to intact plants. In both systems ethylene evolved was swept by a current of methane and the molar ratio between methane and ethylene was stabilized after 12 h. Methane evolution rates remained stable during 12 h and more than 24 h in whole plants and cut plants respectively. It is suggested that alteration in the active gas transport system after 12 h incubation under 10% acetylene may lead to erroneous evaluation of the actual ethylene production in the root's environment. The average values of ethylene evolution rates by cut plants between 12 and 24 h of incubation may be used for comparative studies of nitrogen fixing activity associated to flooded rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, W. 1967 The use of polarography in the assay of oxygen diffusion from roots in anaerobic media. Physiol. Plant.20, 533–540.

    Google Scholar 

  2. Balandreau, J. P. and Dommergues, Y. R. 1971 Mesurein situ de l'activité nitrogénasique. C. R. Acad. Sci Paris sér. D273, 2020–2023.

    Google Scholar 

  3. Balandreau, J. P. and Dommergues, Y. R. 1973 Assaying nitrogenase (C2H2) activity in the field. Bull. Ecol. Res. Commun. Stockholm17, 247–254.

    Google Scholar 

  4. Balandreau, J. P., Millier, C. R. and Dommergues, Y. R. 1974 Diurnal variations of nitrogenase activity in the field. Appl. Microbiol.27, 662–665.

    PubMed  Google Scholar 

  5. Boddey, R. M., Quilt, P. and Ahmad, N. 1978 Acetylene reduction in the rhizosphere of rice: Methods of assay. Plant and Soil50, 567–574.

    Article  Google Scholar 

  6. Boddey, R. M. and Ahmad, N. 1979 Seasonal variations in nitrogenase activity of various rice varieties measured with anin situ acetylene reduction technique in the field. Workshop on Associative N2 Fixation, CENA, Piracicaba, Brasil, 12 p.

  7. Bourrelly, P. and Manguin, E. 1950 Florule algologique d'une rizière de Camargue. La Terre et la Vie5, Numéro spécial, 286–295.

    Google Scholar 

  8. Cornforth, I. S. 1975 The persistence of ethylene in aerobic soils. Plant and Soil42, 85–96.

    Article  Google Scholar 

  9. David, K. A. V. and Fay, P. 1977 Effects of long-term treatment with acetylene on nitrogenfixing microorganisms. Appl. Environ. Microbiol.34, 640–646.

    PubMed  Google Scholar 

  10. David, K. A. V., Apte, S. K. and Thomas, J. 1978 Stimulation of nitrogenase by acetylene: fresh synthesis or conformational change? Biochem. Biophys. Res. Commun.82, 39–45.

    Article  PubMed  Google Scholar 

  11. De Bont, J. A. M. 1976 Bacterial degradation of ethylene and the acetylene reduction test. Can. J. Microbiol.22, 1060–1062.

    PubMed  Google Scholar 

  12. De Bont, J. A. M. and Mulder, E. G. 1976 Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria. Appl. Environ. Microbiol.31, 640–647.

    PubMed  Google Scholar 

  13. De Bont, J. A. M., Lee, K. K. and Bouldin, D. F. 1978 Bacterial oxidation of methane in a rice paddy. Ecol. Bull. Stockholm26, 91–96.

    Google Scholar 

  14. Flett, R. J., Rudd, J. W. D. and Hamilton, R. D. 1975 Acetylene reduction assays for nitrogen fixation in freshwaters: a note of caution. Appl. Microbiol.29, 580–583.

    PubMed  Google Scholar 

  15. Flett, R. J., Hamilton, R. D. and Campbell, N. E. R. 1976 Aquatic acetylene-reduction techniques: solutions to several problems. Can. J. Microbiol.22, 43–51.

    PubMed  Google Scholar 

  16. Furusaka, C., Hattori, T., Sato, K., Yamagishi, H., Hattori, R., Nioh, I., Nioh, T. and Nishio, M. 1969 Microbiological, chemical and physicochemical surveys of the paddy field soil. Rep. Inst. Agr. Res. Tohoku Univ.20, 89–101.

    Google Scholar 

  17. Garcia, J. L., Raimbault, M., Jacq, V., Rinaudo, G. and Roger, P. 1974 Activités microbiennes dans les sols de rizières du Sénégal: Relations avec les caractéristiques physicochimiques et influence de la rhizosphère. Rev. Ecol. Biol. Sol11, 169–185.

    Google Scholar 

  18. Green, M. S. and Etherington, J. R. 1977 Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance? J. Exp. Bot.28, 678–690.

    Google Scholar 

  19. Hardy, R. W. F., Holsten, R. D., Jackson, E. K. and Burns, R. C. 1968 The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol.43, 1185–1207.

    Google Scholar 

  20. Hirota, Y., Fujii, T., Sano, Y., and Iyama, S. 1978 Nitrogen fixation in the rhizosphere of rice. Nature London276, 416–417.

    Article  PubMed  Google Scholar 

  21. Iswaran, V., Patil, V. D. and Abhiswar Sen 1978 Effect of spray of the culture of a bacterium from the phyllosphere of the water hyacinth (Eichornia crassipes) on the yields of paddy and wheat. Plant and Soil50, 253–255.

    Article  Google Scholar 

  22. Juillet, A. 1950 A propos de la flore d'invasion des rizières. Phytoma, Mars 10–16.

  23. Kobayashi, M. and Haque, M. Z. 1971 Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria. Plant and Soil Spec. Vol. 443–456.

  24. Koyama, T. 1963 Gazeous metabolism in lake sediments and paddy soil and the production of atmospheric methane and hydrogen. J. Geophys. Res.68, 3971–3973.

    Google Scholar 

  25. Lee, K. K., Alimagno, B. and Yoshida, T. 1977 Field technique using the acetylene reduction method to assay nitrogenase activity and its association with the rice rhizosphere. Plant and Soil47, 519–526.

    Article  Google Scholar 

  26. Lee, K. K. and Watanabe, I. 1977 Problems of the acetylene reduction technique applied to water-saturated paddy soils. Appl. Environ. Microbiol.34, 654–660.

    Google Scholar 

  27. Panichsakpatana, S., Wada, H., Kimura, M. and Takai, Y. 1978 Nitrogen fixation in paddy soils. II. A model experiment for paddy soil. Soil Sci. Plant Nutr. Tokyo24, 367–373.

    Google Scholar 

  28. Raimbault, M. 1975 Etude de l'influence inhibitrice de l'acétylène sur la formation biologique du méthane dans un sol de rizière. Ann. Microbiol. Inst. Pasteur Paris126 A, 247–258.

    Google Scholar 

  29. Rao, V. R. 1976 Nitrogen fixation as influenced by moisture content, ammonium sulphate and organic sources in a paddy field. Soil Biol. Biochem.8, 445–448.

    Article  Google Scholar 

  30. Reddy, K. R. and Patrick, W. H. 1979 Nitrogen fixation in flooded soil. Soil Sci.128, 80–85.

    Google Scholar 

  31. Rice, W. A. 1979 Influence of the nitrogen content of straw amendements on nitrogenase activity in waterlogged soil. Soil Biol. Biochem.11, 187–191.

    Article  Google Scholar 

  32. Rinaudo, G., Balandreau, J. and Dommergues, Y. 1971 Algal and bacterial non-symbiotic nitrogen fixation in paddy soils. Plant and Soil Spec. Vol. 471–479.

  33. Rinaudo, G., Hamad-Fares, I. and Dommergues, Y. R. 1977 Nitrogen fixation in the rice rhizosphere: Methods of measurement and practices suggested to enhance the process.In Biological Nitrogen Fixation in Farming Systems of the Tropics. Eds. A. Ayanaba and P. J. Dart, 313–322.

  34. Roger, P. A., Reynaud, P. A., Rinaudo, G. E., Ducerf, P. E. and Traore, T. M. 1977 Mise en évidence de la distribution log-normale de l'activité réductrice d'acétylènein situ. Cah. ORSTOM, sér. Biol.12, 133–139.

    Google Scholar 

  35. Rouquerol, T. 1962 Sur le phénomène de fixation de l'azote dans les rizières de Camargue. Ann. Agron. Paris13, 325–346.

    Google Scholar 

  36. Smith, A. M. 1976 Ethylene production by bacteria in reduced microsites in soil and some implications to agriculture. Soil Biol. Biochem.8, 293–298.

    Article  Google Scholar 

  37. Sødergaard, M. and Sand-Jensen, K. 1979 The delay in14C fixation rates by three submerged macrophytes. A source of error in the14C technique. Aquat. Bot.6, 111–119.

    Article  Google Scholar 

  38. Taylor, L. R. 1961 Aggregation, variance and the mean. Nature London189, 732–735.

    Google Scholar 

  39. Wada, H., Panichsakpatana, S., Kimura, M. and Takai, Y. 1978 Nitrogen fixation in paddy soils. I. Factors affecting N2 fixation. Soil Sci. Plant Nutr. Tokyo24, 357–365.

    Google Scholar 

  40. Watanabe, I., Lee, K. K. and Alimagno, B. V. 1978 Seasonal change of N2-fixing rate in rice field assayed byin situ acetylene reduction technique. I. Experiments in long-term fertility plots. Soil Sci. Plant Nutr. Tokyo24, 1–13.

    Google Scholar 

  41. Watanabe, I., Lee, K. K. and DeGuzman, M. R. 1978 Seasonal change of N2-fixing rate in rice field assayed byin situ acetylene reduction technique. II. Estimate of nitrogen fixation associated with rice plant. Soil Sci. Plant Nutr. Tokyo24, 465–471.

    Google Scholar 

  42. Watanabe, I. and Cabrera, D. R. 1979 Nitrogen fixation associated with the rice plant grown in water culture. Appl. Environ. Microbiol.37, 373–378.

    Google Scholar 

  43. Watanabe, I., Barraquio, W. L., DeGuzman, M. R. and Cabrera, D. A. 1979 Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl. Environ. Microbiol.37, 813–819.

    Google Scholar 

  44. Witty, J. F. 1979 Acetylene reduction assay can overestimate nitrogen-fixation in soil. Soil Biol. Biochem.11, 209–210.

    Article  Google Scholar 

  45. Yoshida, T. and Ancajas, R. R. 1970 Application of the acetylene reduction method in nitrogen fixation studies. Soil Sci. Plant Nutr. Tokyo16, 234–237.

    Google Scholar 

  46. Yoshida, T. and Ancajas, R. R. 1971 Nitrogen fixation by bacteria in the root zone of rice. Soil Sci. Soc. Am. Proc.35, 156–158.

    Google Scholar 

  47. Yoshida, T. and Ancajas, R. R. 1973 Nitrogen-fixing activity in upland and flooded rice fields. Soil Sci. Soc. Am. Proc.37, 42–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldensperger, J.F. Heterotrophic nitrogen fixation (acetylene reduction) associated to flooded rice: A modified measurement technique in the field. Plant Soil 57, 439–453 (1980). https://doi.org/10.1007/BF02211701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02211701

Key Words

Navigation