Skip to main content
Log in

Total and regional bone mineral content in normal premenopausal women

  • Originals
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Summary

In the present, cross-section study, a total of 185 normal premenopausal females—aged 15 through 19 years (n=40), 20 to 29 years (n=60), 30 through 39 years (n=40) and 40 to 49 years (n=45)- were assessed in order to observe and evaluate the total body bone mineral content and the regional body mineral content of different anatomical regions (head, trunk, arms and legs), when the bone mass peak is established in women and its course during premenopause. All subjects underwent bone densitometry with dual energy X-ray absorptiometry with a Norland XR-26 bone densitometer. No differences between groups were found in total body bone mineral and regional bone mineral content values. Total body bone mineral values (mean±SD) were 2546±461 g and 2691±499 g in the 15–19 year-old group and 40–49 year-old group respectively. The regional bone mineral content values for the same age group were 495±75 g and 499±89 g for the head, 1007±254 g and 1043±212 g for the trunk, 327±74 g and 336±81 for the arms, and 860±167 g and 811±146 g for the legs. The results of this study indicate that the peak bone mass is reached at the age of 20 years and that it remains stable in the premenopausal eugonadal females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eastell, R., Riggs, B.L. Treatment of osteoporosis. Obstetr Gynecol Clin North Am 1987, 14, 77–88.

    Google Scholar 

  2. Diez, A., Puig, J., Martinez, M.Y., Diez, J.L., Aubia, J., Vivancos, J. Epidemiology of fractures of the proximal femur associated with osteoporosis in Barcelona, Spain. Calcif Tissue Int 1989, 44, 382–386.

    PubMed  Google Scholar 

  3. Hayse, S.P., Sartori, L., Crepaldi, G. Epidemiology of osteoporosis: a study of fracture mortality in Italy. Calcif Tissue Int 1990, 46, 289–293.

    PubMed  Google Scholar 

  4. Rico, H. Prevention of postmenopausal osteoporosis. In: Osteoporosis: Contributions to Modern Management. Ed.: Nordin, B.E.C. Parthenon Publisher Group. Lancaster. 1990: 39–46.

    Google Scholar 

  5. Gilsanz, V., Gibbens, D.T., Carlson, M., Boechat, M.I., Cann, C.E., Schulz, E.E. Peak trabecular vertebral density: a comparison of adolescent and adult female. Calcif Tissue Int. 1988, 43, 260–262.

    PubMed  Google Scholar 

  6. Buchanan, J.R., Myers, C., Lloyd, T., Greer, R.B. Early vertebral trabecular bone loss in normal premenopausal women. J Bone Mineral Res 1988, 3, 583–587.

    Google Scholar 

  7. Gotfredsen, A., Hadberg, A., Nilas, L., Christiansen, C. Total body bone mineral in healthy adults. J Lab Clin Med 1987, 110, 362–368.

    PubMed  Google Scholar 

  8. Hagiwara, S., Miki, T., Nishizawa, Y., Ochi, H., Onoyama, Y., Mori, H. Quantification of bone mineral content using dual-photon absorptiometry in a normal Japanese population. J Bone Min Res 1989, 4, 217–222.

    Google Scholar 

  9. Rodin, A., Murby, B., Smith, M.A., Calfeffi, M., Fentiman, I., Chapman, M.G., Fogelman, I. Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone 1990, 11, 1–5.

    PubMed  Google Scholar 

  10. Pollitzer, W.S., Anderson, J.J.B. Ethnic and genetic differences in bone mass: a review with a hereditary vs. environmental perspective. Am J Clin Nutr 1989, 50, 1244–1259.

    PubMed  Google Scholar 

  11. Nomura, A.,Wasnick, R.D., Heilbrun, L.K., Ross, P.D., Davis, J.W. Comparison of bone mineral content between Japan-born and US-born Japanese subjects in Hawaii. Bone Mineral 1989, 6, 213–223.

    Google Scholar 

  12. Dequeker, J., Geusens, P. Osteoporosis and arthritis. Ann Rheum Dis 1990, 49, 276–280.

    PubMed  Google Scholar 

  13. Mazess, R.B., Wahner, H.M. Nuclear medicine and densitometry. In: Osteoporosis: Etiology, Diagnosis and Management. Eds: Riggs, B.L., Melton, L.J. Raven Press, New York, 1988, 251–295.

    Google Scholar 

  14. Blitz, R.M., Pellegrino, E.D. The chemical anatomy of bone. J Bone Joint Surg 1969, 51-A, 456–466.

    Google Scholar 

  15. Mazess, R., Collick, B., Trempe, J., Barden, H., Hanson, J. Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 1989, 44, 228–232.

    PubMed  Google Scholar 

  16. Sartoris, D.J., Resnick, D. Current and innovative methods for noninvasive bone densitometry. Radiol Clin North Am 1990, 28, 257–278.

    PubMed  Google Scholar 

  17. Tomas, A.E., McKay, D.A., Cutlip, M.B. A nomogram for assessing body weight. Am J Clin Nutr 1976, 29, 301–304.

    Google Scholar 

  18. Mazess, R.B., Peppler, W.W., Chesney, R.W., Lange, T.A., Lindgren, U., Smith, E. Total body and regional bone mineral by dual-photon absorptiometry in metabolic disease. Calcif Tissue Int 1984, 36, 8–13.

    PubMed  Google Scholar 

  19. Johnston, C.C., Hui, S., Witt, R.M., Appledorn, R., Baker, R.S., Longcope, C. Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 1985, 61, 905–911.

    PubMed  Google Scholar 

  20. Schaadt, O., Bohr, H. Different trends of age-related diminution of bone mineral content in the lumbar spine, femoral neck and femoral shaft in women. Calcif Tissue Int 1988, 42, 71–76.

    PubMed  Google Scholar 

  21. Lancaster, E.K., Evans, R.A., Kos, S., Hills, E., Dunstan, C.R., Wong, S.Y.P. Measurement of bone in the os calcis: clinical evaluation. J Bone Mineral Res 1989, 4, 507–514.

    Google Scholar 

  22. Geusens, P., Dequeker, J., Verstraeten, A., Nijs, J. Age-, sex-, and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrametry. J Nucl Med 1986, 27, 1540–1549.

    PubMed  Google Scholar 

  23. Ribot, C., Tremollieres, F., Pouilles, J.M., Louvet, J.P., Guiraud, R. Influence of the menopause and aging on spinal density in French women. Bone Mineral 1988, 5, 89–97.

    Google Scholar 

  24. Block, J.E., Smith, R., Glucer, C.C., Steiger, P., Ettinger, B., Gennat, H. Models of spinal trabecular bone loss as determined by quantitative tomography. J Bone Min Res 1989, 4, 249–257.

    Google Scholar 

  25. Mazess, R.B., Peppler, W.W., Harrison, J.E., McNeill K.G. Total body bone mineral and lean body mass by dual-photon absorptiometry. III. Comparison with trunk calcium by neutron activation analysis. Calcif Tissue Int 1981, 33, 365–368.

    PubMed  Google Scholar 

  26. Gallagher, J.C. The pathogenesis of osteoporosis. Bone Mineral 1990, 9, 215–227.

    Google Scholar 

  27. Riggs, B.L., Wahner, H.W., Dunn, W.L., Mazess, R.B., Offord, K.P., Melton, L.J. Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 1981, 67, 328–335.

    PubMed  Google Scholar 

  28. Mazess, R.B., Barden, H.S., Ettinger, M., Johnston, C., Dawson-Hughes, B., Baran, C., Powell, M., Notelonvwitz, M. Spine and femur density using dual-photon absorptiometry in US white women. Bone Mineral 1987, 2, 211–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, H., Revilla, M., Hernandez, E.R. et al. Total and regional bone mineral content in normal premenopausal women. Clin Rheumatol 10, 423–425 (1991). https://doi.org/10.1007/BF02206664

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02206664

Key words

Navigation