Skip to main content
Log in

Classification and unfoldings of 1:2 resonant Hopf Bifurcation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the bifurcations of periodic solutions from an equilibrium point of a differential equation whose linearization has two pairs of simple pure imaginary complex conjugate eigenvalues which are in 1:2 ratio. This corresponds to a Hopf-Hopf mode interaction with 1:2 resonance, as occurs in the context of dissipative mechanical systems. Using an approach based on Liapunov-Schmidt reduction and singularity theory, we give a framework in which to study these problems and their perturbations in two cases: no distinguished parameter, and one distinguished (bifurcation) parameter. We give a complete classification of the generic cases and their unfoldings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alligood, K. T, &Yorke, J. A., Hopf bifurcation: the appearance of virtual periods in cases of resonance,J. Diff. Eqs. 64 (1986), 375–394.

    Google Scholar 

  2. Arnold, V. I., On matrices depending on parameters. InSingularity Theory: Selected Papers, London Mathematical Society Lecture Note Series,53 (1981), 46–60, Cambridge University Press.

    Google Scholar 

  3. Arnold, V. I.,Geometrical Methods in the Theory of Ordinary Differential Equations. (1983) Springer-Verlag, New York.

    Google Scholar 

  4. Ashkenazi, M. &Chow, S. N., A Hopf's bifurcation theorem for nonsimple eigenvalues,Adv. Appl. Math.,1 (1980), 360–372.

    Google Scholar 

  5. Atadan, A. S. &Huseyin, K., Analysis of dynamical bifurcations in the case of nonsimple eigenvalues,IEEE Proc. Int. Symp. on Circuits and Systems,2 (1985), 871–872.

    Google Scholar 

  6. Bajaj, A. K. &Sethna, P. R., Bifurcation in three-dimensional motions of articulated tubes, I and II,J. Appl. Mech.,49 (1982), 606–611, 612–618.

    Google Scholar 

  7. Bélair, J. &Campbell, S. A., Stability and bifurcations of equilibria in a multiple-delayed differential equation,SIAM J. Appl. Math.,54 (1994), 1402–1424.

    Google Scholar 

  8. Caprino, S., Maffei, C. &Negrini, P., Hopf bifurcation at 1:1 resonance,Nonlin. Anal. Theor. Meth. Appl.,8 (1984), 1011–1032.

    Google Scholar 

  9. Chossat, P. &Dias, F., The 1:2 resonance withO(2) symmetry and its applications to hydrodynamics,J. Nonlin. Sc.,5 (1995), 105–129.

    Google Scholar 

  10. Chossat, P., Golubitsky, M. &Keyfitz, B. L., Hopf-Hopf mode interactions withO(2) symmetry,Dyn. Stab. Sys.,1 (1987), 255–292.

    Google Scholar 

  11. Damon, J., The unfolding and determinacy theorems for subgroups of and,Memoirs Amer. Math. Soc.,306 (1984).

  12. Furter, J. E., Hopf bifurcation at non-semisimple eigenvalues: a singularity theory approach. InInternational Series of Numerical Mathematics,104,E. Allgower,K. Böhme &M. Golubitsky (eds.) (1992), 135–145, Birkhäuser, Basel.

    Google Scholar 

  13. van Gils, S. A., Krupa, M. &Langford, W. F., Hopf bifurcation with non-semisimple 1:1 resonance,Nonlinearity,3 (1990), 825–850.

    Google Scholar 

  14. Golnaraghi, M. F., Tuer, K. &Wang, D., Regulation of a lumped parameter cantilever beam via internal resonance using nonlinear coupling enhancement,Dynamics and Control,4 (1994), 73–96.

    Google Scholar 

  15. Golubitsky, M. &Langford, W. F., Classification and unfoldings of degenerate Hopf bifurcations,J. Diff. Eqs.,41 (1981), 375–415.

    Google Scholar 

  16. Golubitsky, M., Marsden, J. E., Stewart, I. &Dellnitz, M., The constrained Liapunov-Schmidt procedure and periodic orbits,Normal Forms and Homoclinic Chaos.W. F. Langford &W. K. Nagata (eds.), Fields Institute Communications.4 Amer. Math. Soc., Providence, RI (1995).

  17. Golubitsky, M. &Schaeffer, D. G.,Singularities and Groups in Bifurcation Theory. Vol. 1. (1985), Springer-Verlag, New York.

    Google Scholar 

  18. Golubitsky, M., Stewart, I. &Schaeffer, D. G.,Singularities and Groups in Bifurcation Theory. Vol 2. (1988), Springer-Verlag, New York.

    Google Scholar 

  19. Guckenheimer, J., On a codimension two bifurcation. InDynamical Systems and Turbulence.D. A. Rand &L. S. Young (eds.), Springer Lecture Notes in Mathematics,898 (1981), 99–142, New York.

    Google Scholar 

  20. Guckenheimer, J. &Holmes, P. J.,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. (1982), Springer-Verlag, New York.

    Google Scholar 

  21. Hale, J.,Functional Differential Equations (1977), Springer-Verlag, New York.

    Google Scholar 

  22. He, Y. Q.,Normal Form Analysis of Strongly Resonant Hopf Bifurcation, M. Math. thesis (1992), University of Waterloo, Canada.

    Google Scholar 

  23. Henry, D.,Geometric Theory of Semilinear Parabolic Equations. Springer Lecture Notes in Mathematics840 (1981), New York.

  24. Hill, A. &Stewart, I., Hopf-steady state mode interactions withO(2) symmetry,Dyn. Stab. Sys.,6 (1991), 149–171.

    Google Scholar 

  25. Holmes, P. J., Unfolding a degenerate nonlinear oscillator: a codimension two bifurcation. InNonlinear Dynamics.R. H. G. Helleman (ed.), (1980), 473–488, New York Academy of Sciences, New York.

    Google Scholar 

  26. Hungerford, T. W.,Algebra. (1974), Springer-Verlag, New York.

    Google Scholar 

  27. Iooss, G., Direct bifurcation of a steady solution of the Navier-Stokes equations into an invariant torus, SpringerLecture Notes in Mathematics,565, (1975), 69–84, New York.

    Google Scholar 

  28. Iooss, G. &Langford, W. F., Conjectures on the routes to turbulence via bifurcation. InNonlinear Dynamics.R. H. G. Helleman (ed.), (1980), 489–505, New York Academy of Sciences, New York.

    Google Scholar 

  29. Keener, J. P., Secondary bifurcation in nonlinear diffusion reaction equations,Stud. Appl. Math.,55 (1976), 187–211.

    Google Scholar 

  30. Keener, J. P., Infinite period bifurcation and global bifurcation branches,SIAM J. Appl. Math.,41 (1981), 127–144.

    Google Scholar 

  31. Knobloch, E. &Proctor, M. R. E., The double Hopf bifurcation with 2:1 resonance,Proc. R. Soc. Lond. A.,415 (1988), 61–90.

    Google Scholar 

  32. Krupa, M.,On 1:1 Resonant Hopf Bifurcation, M.Sc. thesis (1986), University of Waterloo, Canada.

    Google Scholar 

  33. Langford, W. F., Periodic and steady-state mode interactions lead to tori,SIAM J. Appl. Math.,37 (1979), 22–48.

    Google Scholar 

  34. LeBlanc, V. G.,On the 1:2 Resonant Hopf Bifurcation, Ph.D. thesis (1995), University of Waterloo, Canada.

    Google Scholar 

  35. LeBlanc, V. G., Period doubling and tripling in strongly resonant Hopf-Hopf interactions (1995), preprint.

  36. LeBlanc, V. G. &Langford, W. F., Bifurcation of periodic orbits in 1:2 resonance: a singularity theory approach. InDynamics, Bifurcation and Symmetry.P. Chossat (ed.) (1994), 205–219, Kluwer.

  37. Margolis, S. B. &Matkowsky, B. J., Flame propagation in channels: secondary bifurcation to quasi-periodic pulsations,SIAM J. Appl. Math.,45 (1985), 93–129.

    Google Scholar 

  38. Marsden, J. E. &McCracken, M.,The Hopf Bifurcation and its Applications. (1976), Springer-Verlag, New York.

    Google Scholar 

  39. Meyer, K. R., Normal forms for the general equilibrium,Funkcialaj Ekvacioj,27 (1984), 261–271.

    Google Scholar 

  40. Schmidt, D. S., Hopf's bifurcation theorem and the center theorem of Liapunov with resonance cases,J. Math. Anal. Appl.,63 (1978), 354–370.

    Google Scholar 

  41. Schwarz, G., Smooth functions invariant under the action of a compact Lie group,Topology,14 (1975), 63–68.

    Google Scholar 

  42. Stech, H. W., Generic Hopf bifurcation in a class of integro-differential equations,J. Integral Eqs. Appl.,3 (1991), 175–193.

    Google Scholar 

  43. Steen, P. &Davis, S. H., Quasi-periodic bifurcation in nonlinearly coupled oscillators near a point of strong resonance,SIAM J. Appl. Math.,42 (1982), 1345–1368.

    Google Scholar 

  44. Takens, F., Applications of global analysis I,Communications of the Mathematical Institute, Rijksuniversiteit Utrecht (1973).

  45. Vanderbauwhede, A., Hopf bifurcation at non-semisimple eigenvalues. InMultiparameter Bifurcation Theory.M. Golubitsky &J. Guckenheimer (eds.),Contemp. Math.,56 (1986), 343–353,Amer. Math. Soc., Providence, RI.

    Google Scholar 

  46. Yu, P. &Huseyin, K., On phase-locked motions associated with strong resonance,Quart. Appl. Math.,51 (1993), 91–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated byM. Golubitsky

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeBlanc, V.G., Langford, W.F. Classification and unfoldings of 1:2 resonant Hopf Bifurcation. Arch. Rational Mech. Anal. 136, 305–357 (1996). https://doi.org/10.1007/BF02206623

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02206623

Keywords

Navigation