Skip to main content
Log in

Bounding separable recourse functions with limited distribution information

  • Theory
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The recourse function in a stochastic program with recourse can be approximated by separable functions of the original random variables or linear transformations of them. The resulting bound then involves summing simple integrals. These integrals may themselves be difficult to compute or may require more information about the random variables than is available. In this paper, we show that a special class of functions has an easily computable bound that achieves the best upper bound when only first and second moment constraints are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ben-Tal and E. Hochman, More bounds on the expectation of a convex function of a random variable. J. Appl. Prob. 9 (19720 803–812.

  2. J.R. Birge and S.W. Wallace, A separable piecewise linear upper bound for stochastic linear programs, SIAM J. Control Optim. 26 (1988) 725–739.

    Google Scholar 

  3. J.R. Birge and R.J.-B. Wets, Designing approximation schemes for stochastic optimization problems, in particular, for stochastic programs with recourse, Math. Progr. Study 27 (1986) 54–102.

    Google Scholar 

  4. J.R. Birge and R.J.-B. Wets, Sublinear upper bounds for stochastic linear programs with recourse, Math. Progr. 43 (1989) 131–149.

    Google Scholar 

  5. J.R. Birge and R.J.-B. Wets, Computing bounds for stochastic programming problems by means of a generalized moment problem, Math. Oper. Res. 12 (1987) 149–162.

    Google Scholar 

  6. T. Cipra, Moment problem with given covariance structure in stochastic programming, Ekonom.-Mat. Obzor 21 (1985) 66–77.

    Google Scholar 

  7. G.B. Dantzig,Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963).

    Google Scholar 

  8. P.J. Davis and P. Rabinowitz,Methods of Numerical Integration (Academic Press, Orlando, FL, 1984).

    Google Scholar 

  9. J. Dulá, Bounds on the expectation of convex functions, Ph.D. dissertation, The University of Michigan, Ann Arbor, Michigan (1986).

    Google Scholar 

  10. J. Dulá, An upper bound on the expectation of simplicial functions of multivariate random variables, Math. Progr., to appear.

  11. J. Dupačová, Minimax stochastic programs with nonconvex nonseparable penalty functions, in:Progress in Operations Research, A. Prékopa (ed.) (North-Holland, Amsterdam, 1976) pp. 303–316.

    Google Scholar 

  12. J. Dupačová, Minimax approach to stochastic linear programming and the moment problem. Recent results, ZAMM 58 (1977) T466–467.

    Google Scholar 

  13. H.P. Edmundson, Bounds on the expectation of a convex function of a random variable, The Rand Corporation Paper 982, Santa Monica, CA (1956).

  14. Y. Ermoliev, A. Gaivoronski and C. Nedeeva, Stochastic optimization problems with partially known distribution functions, SIAM J. Control Optim. 23 (1985) 696–716.

    Google Scholar 

  15. K. Frauendorfer, Solving SLP recourse problems with arbitrary multivariate distributions — the dependent case, Math. Oper. Res. 13 (1988) 377–394.

    Google Scholar 

  16. K. Frauendorfer, Solution methods for linear-quadratic stochastic optimization problems, presented at the5th Int. Conf. on Stochastic Programming, Ann Arbor, Michigan (August 1989).

  17. K. Frauendorfer and P. Kall, A solution method for SLP recourse problems with arbitrary multivariate distributions — the independent case, Problems Control Inf. Theory 17 (1988) 177–205.

    Google Scholar 

  18. H. Gassmann and W.T. Ziemba, A tight upper bound for the expectation of a convex function of a multivariate random variable, Math. Progr. Study 27 (1986) 39–53.

    Google Scholar 

  19. D. Hausch and W.T. Ziemba, Bounds on the value of information in uncertain decision problems II, Stochastics 10 (1983) 181–217.

    Google Scholar 

  20. R. Hettich, An implementation of a discretization method for semi-infinite programming, Math. Progr. 34 (1986) 354–361.

    Google Scholar 

  21. C.C. Huang, W. Ziemba and A. Ben-Tal, Bounds on the expectation of a convex function of a random variable: with applications to stochastic programming. Oper. Res. 25 (1979) 315–325.

    Google Scholar 

  22. R. Jagannathan, A minimax procedure for a class of linear programs under uncertainty, Oper. Res. 25 (1977) 173–177.

    Google Scholar 

  23. J.L. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906) 175–193.

    Google Scholar 

  24. P. Kall, Stochastic programming with recourse: upper bounds and moment problems — a review, inAdvances in Mathematical Optimization, J. Guddat (ed.) (Akademie-Verlag, Berlin, 1988) pp. 86–103.

    Google Scholar 

  25. P. Kall, An upper bound for SLP using first and total second moments, this volume.

  26. P. Kall and D. Stoyan, Solving stochastic programming problems with recourse including error bounds, Math. Operationsforsch. Statist. Ser. Optim. 13 (1982) 431–447.

    Google Scholar 

  27. A. Karr, Extreme points of certain sets of probability measures, with applications, Math. Oper. Res. 8 (1983) 74–85.

    Google Scholar 

  28. J.H.B. Kemperman, The general moment problem, a geometric approach, Ann. Math. Statist. 39 (1968) 93–122.

    Google Scholar 

  29. M. Krein and A. Nudelman, The Markov moment problem and extremal problems, Translation of Mathematical Monographs, 50 (The American Mathematical Society, Providence, RI, 1977).

    Google Scholar 

  30. C. Lemaréchal and R. Mifflin, Global and superlinear convergence of an algorithm for one-dimensional minimization of convex functions, Math. Progr. 24 (1982) 241–256.

    Google Scholar 

  31. A. Madansky, Bounds on the expectation of a convex function of a multivariate random variable. Ann. Math. Statist. 30 (1959) 743–746.

    Google Scholar 

  32. R. Mifflin and J. Strodiot. Reliable and rapid univariate minimization without derivatives, presented atTIMS/ORSA Joint National Meeting, Los Angeles, CA (April, 1986).

  33. A.C. Miller, III, and T.R. Rice, Discrete approximations of probability distributions, Manag. Sci. 29 (1983) 352–362.

    Google Scholar 

  34. G. Peano, Residuo in formulas de quadratura, Mathesis 39 (1914) 5–10.

    Google Scholar 

  35. T.J. Rivlin,An Introduction to the Approximation of Functions (Blaisdell, Waltham, MA, 1969).

    Google Scholar 

  36. R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970).

    Google Scholar 

  37. N.M. Roy, Extreme points of convex sets in infinite dimensional spaces, Am. Math. Monthly 94 (1987) 409–422.

    Google Scholar 

  38. H. Scarf, A minimax solution of an inventory problem, in:Studies in the Mathematical Theory of Inventory and Production, K.J. Arrow, S. Karlin and H. Scarf (eds.) (Stanford University Press, Stanford, CA, 1958).

    Google Scholar 

  39. F.A. Valentine,Convex Sets (McGraw-Hill, New York, 1964).

    Google Scholar 

  40. S. Wallace, A piecewise linear upper bound on the network recourse problem, Math. Progr. 38 (1987) 133–146.

    Google Scholar 

  41. J. Žáčková, On minimax solutions of stochastic linear programming problems, Časopis pro Pěstování Matematiky 91 (1966) 423–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been partially supported by the National Science Foundation under Grants ECS-8304065 and ECS-8815101, by the Office of Naval Research Grant N00014-86-K-0628 and by the National Research Council under a Research Associateship at the Naval Postgraduate School, Monterey, California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birge, J.R., Dulá, J.H. Bounding separable recourse functions with limited distribution information. Ann Oper Res 30, 277–298 (1991). https://doi.org/10.1007/BF02204821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02204821

Keywords

Navigation